精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,如果都是整数,就称点为整点,下列命题中正确的是__________.(写出所有正确命题的编号)

①存在这样的直线,既不与坐标轴平行又不经过任何整点;

②若都是无理数,则直线不经过任何整点;

③直线经过无穷多个整点,当且仅当经过两个不同的整点;

④直线经过无穷多个整点的充分必要条件是: 都是有理数;

⑤存在恰经过一个整点的直线.

【答案】①③⑤

【解析】对于,比如直线,当取整数时, 始终是一个无理数即直线既不与坐标轴平行又不经过任何整点①正确对于,直线都是无理数,但直线经过整点②错误,对于,当直线经过两个整点时,它经过无数多个整点正确对于,当时,直线不通过任何整点④错误对于,比如直线只经过一个整点⑤正确故答案为①③⑤.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】△ABC的三个内角A,B,C的对边长分别为a,b,c,R是△ABC的外接圆半径,有下列四个条件: ①(a+b+c)(a+b﹣c)=3ab
②sinA=2cosBsinC
③b=acosC,c=acosB

有两个结论:甲:△ABC是等边三角形.乙:△ABC是等腰直角三角形.
请你选取给定的四个条件中的两个为条件,两个结论中的一个为结论,写出一个你认为正确的命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的导函数的图像与直线平行,且处取得极小值.设

(1)若曲线上的点到点的距离的最小值为,求的值;

(2)如何取值时,函数存在零点,并求出零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

求函数的单调区间;

时,讨论函数图像的交点个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=(x2﹣2ax)ebx , x为自变量.
(1)函数f(x)分别在x=﹣1和x=1处取得极小值和极大值,求a,b.
(2)若a≥0且b=1,f(x)在[﹣1,1]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个样本M的数据是x1 , x2 , …,xn , 它的平均数是5,另一个样本N的数据x12 , x22 , …,xn2它的平均数是34.那么下面的结果一定正确的是(
A.SM2=9
B.SN2=9
C.SM2=3
D.Sn2=3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在以下关于向量的命题中,不正确的是(
A.若向量 ,向量 (xy≠0),则
B.若四边形ABCD为菱形,则
C.点G是△ABC的重心,则
D.△ABC中, 的夹角等于A

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(1,2), =(﹣3,2), 当k=时,(1)k + ﹣3 垂直;
当k=时,(2)k + ﹣3 平行.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,{bn}是等比数列,且b2=3,b3=9,a1=b1 , a14=b4 . (Ⅰ)求{an}的通项公式;
(Ⅱ)设cn=an+bn , 求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案