精英家教网 > 高中数学 > 题目详情

【题目】如图,正方形的棱长为1,线段上有两个动点.,且,则下列结论中错误的是(

A.

B.三棱锥体积是定值;

C.二面角的平面角大小是定值;

D.与平面所成角等于与平面所成角;

【答案】D

【解析】

对四个选项逐一分析,由此确定结论错误的选项.

连接.根据正方体的几何性质可知,所以平面,故平面.

对于A选项,由于平面,所以,故A选项结论正确.

对于B选项.由于三角形的面积是定值,到平面的距离是定值,所以三棱锥的体积是定值,故B选项结论正确.

对于C选项,二面角等于二面角,所以二面角的平面角大小是定值,故C选项结论正确.

对于D选项,由于平面.所以分别是与平面所成角、与平面所成角,由于,所以这两个角不相等,故D选项结论错误.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线过点,倾斜角为,在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的方程为.

1)写出直线的参数方程和曲线的直角坐标方程;

2)若直线与曲线相交于两点,设点,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业年的纯利润为万元,因设备老化等原因,企业的生产能力将逐年下降,若不进行技术改造,预测从今年(年)起每年比上一年纯利润减少万元,今年初该企业一次性投入资金万元进行技术改造,预计在未扣除技术改造资金的情况下,第年(今年为第一年)的利润为万元(为正整数).

1)设从今年起的前年,若该企业不进行技术改造的累计纯利润为万元,进行技术改造后的累计纯利润为万元(须扣除技术改造资金),求的表达式;

2)以上述预测,从今年起该企业至少经过多少年后,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,已知,顶点P在平面ABC上的射影为的外接圆圆心.

1)证明:平面平面ABC

2)若点M在棱PA上,,且二面角P-BC-M的余弦值为,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】轴上动点引抛物线的两条切线,其中为切线.

1)若切线的斜率分别为,求证:为定值,并求出定值;

2)当最小时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.

1)根据条形统计图,估计本届高三学生本科上线率.

2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.

i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);

ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.

可能用到的参考数据:取.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 mn 是两条不同的直线,αβγ是三个不同的平面,下列命题中正确的是(

A.αβ βγ ,则αγ

B. mn ,则αβ

C. mn 是异面直线, mβ nα ,则αβ

D.平面α内有不共线的三点到平面 β的距离相等,则αβ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有如下问题:今有蒲生一日,长四尺,莞生一日,长一尺.蒲生日自半,莞生日自倍.意思是:今有蒲第一天长高四尺,莞第一天长高一尺,以后蒲每天长高前一天的一半,莞每天长高前一天的两倍.请问第几天,莞的长度是蒲的长度的4倍(

A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,扇形的半径为,圆心角,点为弧上一点,平面,点∥平面

(1)求证:平面平面

(2)求平面和平面所成二面角的正弦值的大小.

查看答案和解析>>

同步练习册答案