精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2+ax,若f(f(x))的最小值与f(x)的最小值相等,则a的取值范围是

【答案】{aa≥2或a≤0}
【解析】解:由于f(x)=x2+ax,x∈R.则当x=﹣ 时,f(x)min=﹣ , 又函数y=f(f(x))的最小值与函数y=f(x)的最小值相等,
则函数y必须要能够取到最小值,即﹣ ≤﹣
得到a≤0或a≥2,
所以答案是:{a|a≥2或a≤0}.
【考点精析】通过灵活运用函数的最值及其几何意义和二次函数的性质,掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值;当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数有4个零点,其图象如下图,和图象吻合的函数解析式是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形中, 的中点,将三角形沿翻折到图②的位置,使得平面 平面.

(1)在线段上确定点,使得平面,并证明;

(2)求所在平面构成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A(﹣ ,0),B( ,0),锐角α的终边与单位圆O交于点P. (Ⅰ)用α的三角函数表示点P的坐标;
(Ⅱ)当 =﹣ 时,求α的值;
(Ⅲ)在x轴上是否存在定点M,使得| |= | |恒成立?若存在,求出点M的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某班学生一次英语测验的成绩分析,各分数段的分布如图(分数取整数),由此,估计这次测验的优秀率(不小于80分)为(

A.92%
B.24%
C.56%
D.5.6%

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,点E、F、G分别是棱SA、SB、SC的中点.求证:
(1)平面EFG∥平面ABC;
(2)BC⊥平面SAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,若Ω是长方体ABCD﹣A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1 , 则下列结论中不正确的是(
A.EH∥FG
B.四边形EFGH是矩形
C.Ω是棱柱
D.Ω是棱台

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正三角形内切圆的半径是高的 ,把这个结论推广到正四面体,类似的结论正确的是(
A.正四面体的内切球的半径是高的
B.正四面体的内切球的半径是高的
C.正四面体的内切球的半径是高的
D.正四面体的内切球的半径是高的

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用计算机随机产生的有序二元数组(x,y)满足﹣1≤x≤1,﹣1≤y≤1.
(1)若x,y∈Z,求事件“x2+y2≤1”的概率.
(2)求事件“x2+y2>1”的概率.

查看答案和解析>>

同步练习册答案