【题目】已知函数.
(1)若,求曲线在点处的切线方程;
(2)求证:函数有且只有一个零点.
【答案】(1);(2)详见解析.
【解析】
(1)对函数进行求导,求出切线的斜率和切点坐标,即可得答案;
(2)函数的定义域为,要使函数有且只有一个零点,只需方程有且只有一个根,即只需关于x的方程在上有且只有一个解,利用导数可得函数在单调递增,再利用零点存在定理,即可得答案;
(1)当时,函数,,,
,,
所以函数在点处的切线方程是.
(2)函数的定义域为,
要使函数有且只有一个零点,只需方程有且只有一个根,
即只需关于x的方程在上有且只有一个解.
设函数,
则,
令,
则/span>,
由,得.
x | |||
单调递减 | 极小值 | 单调递增 |
由于,
所以,
所以在上单调递增,
又,,
①当时, ,函数在有且只有一个零点,
②当时,由于,所以存在唯一零点.
综上所述,对任意的函数有且只有一个零点.
科目:高中数学 来源: 题型:
【题目】金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生,新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:
愿意 | 不愿意 | |
男生 | 60 | 20 |
女生 | 40 | 40 |
(1)通过估算,试判断男、女哪种性别的学生愿意投入到新生接待工作的概率更大.
(2)能否有99%的把握认为,愿意参加新生接待工作与性别有关?
附:,其中.
0.05 | 0.01 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆的左、右顶点分别为,,上、下顶点分别为,,且,为等边三角形,过点的直线与椭圆在轴右侧的部分交于、两点.
(1)求椭圆的标准方程;
(2)求四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面平面ABCD,,,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.
求证:(1)直线平面EFG;
(2)直线平面SDB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率,左、右焦点分别为、,抛物线的焦点恰好是该椭圆的一个顶点.
(1)求椭圆的方程;
(2)已知直线:与圆:相切,且直线与椭圆相交于、两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线的焦点为.
若点为抛物线上异于原点的任一点,过点作抛物线的切线交轴于点,证明:.
,是抛物线上两点,线段的垂直平分线交轴于点 (不与轴平行),且.过轴上一点作直线轴,且被以为直径的圆截得的弦长为定值,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥的底面中,∥,,平面,是的中点,且
(1)求证:∥平面;
(2)求二面角的余弦值;
(3)在线段内是否存在点,使得?若存在指出点的位置,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com