精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,已知平面为等边三角形,与平面所成角的正切值为.

(Ⅰ)证明:平面

(Ⅱ)若的中点,求二面角的余弦值.

【答案】(Ⅰ)见解析.(Ⅱ).

【解析】

(Ⅰ)先证明与平面所成的角,于是可得,于是.又由题意得到,故得,再根据线面平行的性质可得所证结论. (Ⅱ) 取的中点,连接,可证得.建立空间直角坐标系,分别求出平面和平面的法向量,根据两个法向量夹角的余弦值得到二面角的余弦值.

(Ⅰ)证明:因为平面平面

所以

,,

所以平面

所以与平面所成的角.

中,

所以

所以在中,,.

所以在底面中,,

平面平面

所以平面

(Ⅱ)解:取的中点,连接,则,由(Ⅰ)知

所以

分别以轴建立空间直角坐标系.

所以

设平面的一个法向量为

,即,得

,则

设平面的一个法向量为

,即,得

,则

所以

由图形可得二面角为锐角,

所以二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条的相关规定:机动车行经人行道时,应当减速慢行;遇行人正在通过人行道,应当停车让行,俗称“礼让斑马线”, 《中华人民共和国道路交通安全法》第90条规定:对不礼让行人的驾驶员处以扣3分,罚款50元的处罚.下表是某市一主干路口监控设备所抓拍的5个月内驾驶员“礼让斑马线”行为统计数据:

月份

1

2

3

4

5

违章驾驶员人数

120

105

100

90

85

(1)请利用所给数据求违章人数与月份之间的回归直线方程

(2)预测该路口9月份的不“礼让斑马线”违章驾驶员人数.

参考公式: .

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C)过点,短轴一个端点到右焦点的距离为2

1)求椭圆C的方程;

2)设过定点的直线1与椭圆交于不同的两点AB,若坐标原点O在以线段AB为直径的圆上,求直线l的斜率k

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调区间与极值;

(Ⅱ)若不等式对任意恒成立,求实数的取值范围;

(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,分别是棱上的点(点不同于点),且为棱上的点,且

求证:(1)平面平面

2平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中,D点为棱AB的中点.

求证:平面

,求二面角的余弦值;

两两垂直,求证:此三棱柱为正三棱柱.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一椭圆形溜冰场,长轴长100米,短轴长为60米,现要在这溜冰场上划定一个各顶点都在溜冰场边界上的矩形区域,且使这个区域的面积最大,应把这个矩形的顶点定位在何处?并求出此矩形的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.由测量表得到如下频率分布直方图

(1)补全上面的频率分布直方图(用阴影表示);

(2)统计方法中,同一组数据常用该组区间的中间值作为代表,据此估计这种产品质量指标值服从正态分布Z(μ,σ2),其中μ近似为样本平均值,σ2近似为样本方差s2(组数据取中间值);

①利用该正态分布,求从该厂生产的产品中任取一件,该产品为合格品的概率;

②该企业每年生产这种产品10万件,生产一件合格品利润10元,生产一件不合格品亏损20元,则该企业的年利润是多少?

参考数据:=5.1,若Z~N(μ,σ2),则P(μ﹣σ,μ+σ)=0.6826,P(μ﹣2σ,μ+2σ)=0.9544.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】郴州市某中学从甲乙两个教师所教班级的学生中随机抽取100人,每人分别对两个教师进行评分,满分均为100分,整理评分数据,将分数以10为组距分成6组:.得到甲教师的频率分布直方图,和乙教师的频数分布表:

乙教师分数频数分布表

分数区间

频数

3

3

15

19

35

25

(1)在抽样的100人中,求对甲教师的评分低于70分的人数;

(2)从对乙教师的评分在范围内的人中随机选出2人,求2人评分均在范围内的概率;

(3)如果该校以学生对老师评分的中位数是否大于80分作为衡量一个教师是否可评为该年度该校优秀教师的标准,则甲、乙两个教师中哪一个可评为年度该校优秀教师?(精确到0.1)

查看答案和解析>>

同步练习册答案