精英家教网 > 高中数学 > 题目详情
19.已知直线l过两直线l1:2x+3y-9=0和l2:x-2y-1=0的交点,且与直线3x+2y-16=0平行,求直线l的方程.

分析 设出过直线l1和l2交点的直线方程,根据该直线与已知直线3x+2y-16=0平行,列出方程求出直线l的方程即可.

解答 解:设过直线l1:2x+3y-9=0和l2:x-2y-1=0交点的直线方程为:
(2x+3y-9)+λ(x-2y-1)=0,λ∈R;
整理得(2+λ)x+(3-2λ)y-(9+λ)=0,
又该直线与直线3x+2y-16=0平行,
∴$\frac{2+λ}{3}$=$\frac{3-2λ}{2}$≠$\frac{-(9+λ)}{-16}$,
解得λ=$\frac{5}{8}$;
∴所求直线l的方程为(2+$\frac{5}{8}$)x+(3-$\frac{5}{4}$)y-(9+$\frac{5}{8}$)=0,
即3x+2y-11=0.

点评 本题考查了两条直线的交点坐标以及两条直线平行的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知等差数列{an}中,a3=$\frac{π}{3}$,则cos(a1+a2+a6)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等差数列{an}中,公差d≠0,己知数列${a}_{{k}_{1}}$,${a}_{{k}_{2}}$,${a}_{{k}_{3}}$,…${a}_{{k}_{n}}$…是等比数列,其中k1=1,k2=7,k3=25.
(1)求数列{kn}的通项公式;
(2)若a1=9,bn=$\sqrt{\frac{{a}_{{k}_{n}}}{6}}+\sqrt{\frac{{k}_{n}}{2}}$,Sn=${{b}_{1}}^{2}$+${{b}_{2}}^{2}$+${{b}_{3}}^{2}$…+${{b}_{n}}^{2}$,Tn=$\frac{1}{{{b}_{1}}^{2}}$+$\frac{1}{{{b}_{2}}^{2}}$+$\frac{1}{{{b}_{3}}^{2}}$…+$\frac{1}{{{b}_{n}}^{2}}$,试判断{Sn+Tn}的前100项中有多少项是能被4整除的整数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.几何体的三视图如图所示,则该几何体的体积为28.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.斜四棱柱的侧面是矩形的面最多有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知Eξ=5,η=3ξ+1,求Eη之值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在直角三棱柱ABC-A1B1C1中,若BC⊥AC,∠BAC=$\frac{π}{3}$,AC=4,AA1=4,M为AA1中点,点P为BM中点,Q在线段CA1上,且A1Q=3QC,则PQ的长度为$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,△OBC的边BC所在的直线方程是l:x-y-3=0
(1)如果一束光线从原点O射出,经直线l反射后,经过点(3,3),求反射后光线所在直线的方程:
(2)如果在△OBC中,∠BOC为直角,求△OBC面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\left\{\begin{array}{l}{(a-1)x+\frac{5}{2},x≤1}\\{\frac{2a+1}{x},x>1}\end{array}\right.$,在定义域R上满足对任意实数x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0,则a的取值范围是(-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

同步练习册答案