精英家教网 > 高中数学 > 题目详情

【题目】乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换.每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发球.
(1)求开始第4次发球时,甲、乙的比分为1比2的概率;
(2) 表示开始第4次发球时乙的得分,求 的期望.

【答案】
(1)解:记 表示事件:第1次和第二次这两次发球,甲共得 分,

表示事件:第3次发球,甲得1分;

表示事件:开始第4次发球时,甲乙的比分为1比2.

.


(2)解: .

的可能取值为0,1,2,3.

.

.

.

.(或


【解析】(1)由题意可知甲、乙的比分为1比2,则可能的情况有两种,根据互斥事件与独立事件的概率求法即可得到其概率。(2)根据题意得到ξ 的可能取值,用对立事件的概率公式求出结果然后根据数学期望的公式求出其值即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+ax,(a∈R),其图象与x轴交于A(x1 , 0),B(x2 , 0)两点,且x1<x2
(1)求a的取值范围;
(2)证明: ;(f′(x)为f(x)的导函数)
(3)设点C在函数f(x)的图象上,且△ABC为等边三角形,记 ,求(t﹣1)(a+ )的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正四面体的“骰子”(四个面分别标有1,2,3,4四个数字),掷一次“骰子”三个侧面的数字的和为“点数”,连续抛掷“骰子”两次.
(1)设A为事件“两次掷‘骰子’的点数和为16”,求事件A发生的概率;
(2)设X为两次掷“骰子”的点数之差的绝对值,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.
(1)求直线l的极坐标方程;
(2)若直线l与曲线C相交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,曲线C的参数方程为 为参数),以坐标原点为极点, 轴非负半轴为极轴建立极坐标系.
(1)写出曲线C的极坐标方程;
(2)设点M的极坐标为 ,过点M的直线 与曲线C交于A、B两点,若 ,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的一个内角为,并且三边长构成公差为4的等差数列,则的面积为( )

A. 15 B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|﹣|x﹣4a|(a>0),若对x∈R,都有f(2x)﹣1≤f(x),则实数a的最大值为(  )
A.
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 ,使 恒成立,命题 使函数 有零点, 若命题“ ”是真命题,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中,

(1)求证:数列是等比数列

(2)求数列的通项公式

(3)设,若对任意,有恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案