【题目】已知圆,圆心为,定点,P为圆上一点,线段上一点N满足,直线上一点Q,满足.
(Ⅰ) 求点Q的轨迹C的方程;
(Ⅱ) O为坐标原点, 是以为直径的圆,直线与相切,并与轨迹C交于不同的两点A,B. 当且满足时,求△OAB面积S的取值范围.
【答案】(Ⅰ).(Ⅱ).
【解析】试题分析:(Ⅰ)直接根据已知条件结合椭圆的定义求出曲线的方程.
(Ⅱ)利用直线和曲线的位置关系建立方程组,进一步利用一元二次方程根和系数的关系建立关系式,进一步求出参数的取值范围.
试题解析:
(Ⅰ)∵
∴ N为的中点
∵
∴ QN为线段的中垂线
∴
∵
∴由椭圆的定义可知Q的轨迹是以为焦点,长轴长为的椭圆,
设椭圆的标准方程为,
则,
∴.
∴点Q的轨迹C的方程为.
(Ⅱ)∵圆O与直线相切,
∴,即,
由,消去y整理得.
∵直线与椭圆交于两个不同点,
∴,
将代入上式,可得,
设,
则,
∴,
∴,
∴,
∵,解得.
满足.
又,
设,则.
∴ ,
∴
故△OAB面积S的取值范围为.
科目:高中数学 来源: 题型:
【题目】如图所示,已知AB,CD是圆O中两条互相垂直的直径,两个小圆与圆O以及AB,CD均相切,则往圆O内投掷一个点,该点落在阴影部分的概率为( )
A.12﹣8
B.3﹣2
C.8﹣5
D.6﹣4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4sincos x+.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若函数g(x)=f(x)-m区间在上有两个不同的零点x1,x2,求实数m的取值范围,并计算tan(x1+x2)的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=2sin(π-x)sin x-(sin x-cos x)2.
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com