精英家教网 > 高中数学 > 题目详情
9.直线y=-$\sqrt{3}$x+2$\sqrt{3}$的倾斜角是(  )
A.30°B.60°C.120°D.150°

分析 由直线的方程求得直线的斜率,再根据倾斜角和斜率的关系求得它的倾斜角即可.

解答 解:由于直线y=-$\sqrt{3}$x+2$\sqrt{3}$,
设倾斜角为θ,则tanθ=-$\sqrt{3}$,θ=120°,
故选:C.

点评 本题主要考查直线的倾斜角和斜率,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.“α=$\frac{π}{6}$”是“tan2α=$\sqrt{3}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=$\frac{bx}{lnx}$-ax.
(1)若a=0,求f(x)的单调增区间;
(2)当b=1时,若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求实数a的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知A={m|-1<m<0},B={m|mx2+2mx-1<0对任意实数x恒成立},则有(  )
A.A⊆BB.B⊆AC.A=BD.A∩B=∅

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x+5;函数g(x)=ax(a>0且a≠1).
(1)求f(x)的解析式;
(2)若g(2)=9,且g[f(x)]≥k对x∈[-1,1]恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若f(x-1)=x2+1,则f(x)=x2+2x+2(x∈R).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若向量$\vec a$,$\vec b$的夹角为$\frac{π}{3}$,且$|{\vec a}|=2$,$|{\vec b}|=1$,则向量$\vec a$与向量$\vec a-2\vec b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若a=log${\;}_{\frac{1}{3}}$2,b=log${\;}_{\frac{1}{2}}$$\frac{1}{3}$,c=($\frac{1}{2}$)0.3,则,a,b,c的大小关系为a<c<b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.对于函数f(x),若存在x0∈R,使得f(x0)=x0成立,则称x0为f(x)的“滞点”.己知函数f(x)=$\frac{2{x}^{2}-a}{x-2a}$,若f(x)在x∈[-1,1]内存在“滞点”,求a的取值范围.

查看答案和解析>>

同步练习册答案