精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)当时,求的最小值

2)是否存在实数同时满足下列条件:①;②当的定义域为时,其值域为.若存在,求出的值,若不存在,说明理由.

【答案】12)不存在,见解析

【解析】

1)利用换元法将原函数转化为一元二次函数,利用二次函数的图象与性质分类讨论求最小值;(2)由定义域的范围确定解析式,根据函数的单调性及值域列出方程组可求得,与已知条件矛盾,故满足题意的不存在.

1)设,∵,∴,则

时,上单调递增,则

时,上单调递减,在上单调递增,则

时,上单调递减,则.

2)假设满足题意的存在,∵,∴

∵函数上是减函数,

根据题意可得,两式相减得

又∵,∴,∴矛盾.

∴满足题意的不存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线C:(a>0,b>0)的渐近线方程为y=±x,右顶点为(1,0).

(1)求双曲线C的方程;

(2)已知直线y=x+m与双曲线C交于不同的两点A,B,且线段AB的中点为,当x0≠0时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,ABBC,E、F分别为A1C1和BC的中点

(1)求证:平面ABE平面B1BCC1

(2)求证:C1F//平面ABE

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为正方形,平面的中点,于点的重心.

(1)求证:平面

(2)若,点在线段上,且,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高二年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高二年级抽取了45名学生的测评结果,并作出频数统计表如下:

1:男生

等级

优秀

合格

尚待改进

频数

15

5

2:女生

等级

优秀

合格

尚待改进

频数

15

3

1)由表中统计数据填写下边列联表:

男生

女生

总计

优秀

非优秀

总计

2)试采用独立性检验进行分析,能否在犯错误的概率不超过0.1的前提下认为测评结果优秀与性别有关”.

参考数据与公式:,其中.

临界值表:

0.1

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“工资条里显红利,个税新政人民心”,随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段,某从业者为了解自己在个税新政下能享受多少税收红利,绘制了他在26岁~35岁(2009年~2018年)之间各月的月平均收入(单位:千元)的散点图:

(1)由散点图知,可用回归模型拟合的关系,试根据有关数据建立关于的回归方程;

(2)如果该从业者在个税新政下的专项附加扣除为3000元/月,试利用(1)的结果,将月平均收入为月收入,根据新旧个税政策,估计他36岁时每个月少缴交的个人所得税.

附注:

参考数据,,其中;取

参考公式:回归方程中斜率和截距的最小二乘估计分别为,

新旧个税政策下每月应纳税所得额(含税)计算方法及税率表如下:

旧个税税率表(个税起征点3500元)

新个税税率表(个税起征点5000元)

税缴级数

每月应纳税所得额(含税)

=收入-个税起征点

税率

(%)

每月应纳税所得额(含税)

=收入一个税起征点-专项附加扣除

税率

(%)

1

不超过1500元的部分

3

不超过3000元的部分

3

2

超过1500元至4500元的部分

10

超过3000元至12000元的部分

10

3

超过4500元至9000元的部分

20

超过12000元至25000元的部分

20

4

超过9000元至35000元的部分

25

超过25000元至35000元的部分

25

5

超过35000元155000元的部分

30

超过35000元至55000元的部分

30

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代的数学名著,书中对几何学的研究比西方早一千多年.在该书中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵;将底面为矩形,一侧棱垂直于底面的四棱锥称为阳马;将四个面均为直角三角形的四面体称为鳖臑.如图,在堑堵中,,鳖臑的体积为2,则阳马外接球表面积的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业生产了一种新产品,在推广期邀请了100位客户试用该产品,每人一台.试用一个月之后进行回访,由客户先对产品性能作出“满意”或“不满意”的评价,再让客户决定是否购买该试用产品(不购买则可以免费退货,购买则仅需付成本价).经统计,决定退货的客户人数是总人数的一半,“对性能满意”的客户比“对性能不满意”的客户多10人,“对性能不满意”的客户中恰有选择了退货.

(1)请完成下面的列联表,并判断是否有的把握认为“客户购买产品与对产品性能满意之间有关”.

对性能满意

对性能不满意

合计

购买产品

不购买产品

合计

(2)企业为了改进产品性能,现从“对性能不满意”的客户中按是否购买产品进行分层抽样,随机抽取6位客户进行座谈.座谈后安排了抽奖环节,共有4张奖券,奖券上分别印有200元、400元、600元和800元字样,抽到奖券可获得相应奖金.6位客户有放回的进行抽取,每人随机抽取一张奖券,求6位客户中购买产品的客户人均所得奖金不少于500元的概率.

附:,其中

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象关于原点对称,其中为常数.

1)求的值;

2)当时, 恒成立,求实数的取值范围;

3若关于的方程上有解,求的取值范围.

查看答案和解析>>

同步练习册答案