【题目】在△ABC中, .
(Ⅰ)若c2=5a2+ab,求 ;
(Ⅱ)求sinAsinB的最大值.
【答案】解:(Ⅰ)由余弦定理可得:c2=a2+b2﹣2abcosC=a2+b2+ab,
又由c2=5a2+ab,则有5a2+ab=a2+b2+ab,
变形可得b2=4a2 , 即b=2a,
则 = =2;
(Ⅱ)根据题意, ,则A+B= ,即B= ﹣A,
sinAsinB=sinAsin( ﹣A)=sinA[ cosA﹣ sinA]
= sinAcosA﹣ sin2A= ﹣
= ﹣ ,
又由A+B= ,则0<A< ,
则 <2A+ < ,
进而有0< ﹣ ≤ ,
即0<sinAsinB≤ ,
故sinAsinB的最大值为
【解析】(Ⅰ)根据题意,结合余弦定理可得5a2+ab=a2+b2+ab,变形可得b2=4a2 , 即b=2a,由正弦定理分析可得答案;(Ⅱ)根据题意,
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2﹣1.
(1)对于任意的1≤x≤2,不等式4m2|f(x)|+4f(m)≤|f(x﹣1)|恒成立,求实数m的取值范围;
(2)若对任意实数x1∈[1,2].存在实数x2∈[1,2],使得f(x1)=|2f(x2)﹣ax2|成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|ax2+x﹣4a|,其中x∈[﹣2,2],a∈[﹣1,1].
(1)当α=1时,求函数y=f(x)的值域;
(2)记f(x)的最大值为M(a),求M(a)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 且λSn=λ﹣an , 其中λ≠0且λ≠﹣1.
(1)证明:{an}是等比数列,并求其通项公式;
(2)若 ,求λ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn , 且λSn=λ﹣an , 其中λ≠0且λ≠﹣1.
(1)证明:{an}是等比数列,并求其通项公式;
(2)若 ,求λ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={a1 , a2 , …,an},ai∈R,i=1,2,…,n,并且n≥2. 定义 (例如: ).
(Ⅰ)若A={1,2,3,4,5,6,7,8,9,10},M={1,2,3,4,5},集合A的子集N满足:N≠M,且T(M)=T(N),求出一个符合条件的N;
(Ⅱ)对于任意给定的常数C以及给定的集合A={a1 , a2 , …,an},求证:存在集合B={b1 , b2 , …,bn},使得T(B)=T(A),且 .
(Ⅲ)已知集合A={a1 , a2 , …,a2m}满足:ai<ai+1 , i=1,2,…,2m﹣1,m≥2,a1=a,a2m=b,其中a,b∈R为给定的常数,求T(A)的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某人上午7时,乘摩托艇以匀速vkm/h(8≤v≤40)从A港出发到距100km的B港去,然后乘汽车以匀速wkm/h(30≤w≤100)自B港向距300km的C市驶去.应该在同一天下午4至9点到达C市. 设乘坐汽车、摩托艇去目的地所需要的时间分别是xh,yh.
(1)作图表示满足上述条件的x,y范围;
(2)如果已知所需的经费p=100+3(5﹣x)+2(8﹣y)(元),那么v,w分别是多少时p最小?此时需花费多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,且此函数图象过点(1,5).
(1)求实数m的值;
(2)判断f(x)奇偶性;
(3)讨论函数f(x)在[2,+∞)上的单调性?并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com