精英家教网 > 高中数学 > 题目详情
已知抛物线的方程为y2=4x,过其焦点F的直线l与抛物线交于A,B两点,若S△AOF=3S△BOF(O为坐标原点),则|AB|=(  )
A、
16
3
B、
8
3
C、
4
3
D、4
考点:直线与圆锥曲线的综合问题,抛物线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:根据对称性可设直线的AB的斜率为锐角,利用S△AOF=3S△BOF,求得yA=-3yB,设出直线AB的方,与抛物线方程联立消去x,利用韦达定理表示出yA+yB和yAyB,进而求得利用
yA
yB
+
yB
yA
,求得m,最后利用斜率和A,B的坐标求得|AB|.
解答: 解:设直线的AB的斜率为锐角,
∵S△AOF=3S△BOF
∴yA=-3yB
∴设AB的方程为x=my+1,与y2=4x联立消去x得,
y2-4my-4=0,
∴yA+yB=4m,yAyB=-4.
yA
yB
+
yB
yA
=
(yA+yB)2-2yAyB
yAyB
=
(yA+yB)2
yAyB
-2=
16m2
-4
-2
=-3-
1
3

∴m2=
1
3

∴|AB|=
1+m2
(yA+yB)2-4yAyB
=
16
3

故选:A.
点评:本题主要考查了抛物线的概念和性质,直线和抛物线的综合问题.要注意解题中出了常规的联立方程,用一元二次方程根与系数的关系表示外,还可考虑运用某些几何性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

圆心在原点且与直线y=2-x相切的圆的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的前n项和是Sn,S18:S9=7:8
(Ⅰ)求证:S3,S9,S6依次成等差数列;
(Ⅱ)a7与a10的等差中项是否是数列{an}中的项?,如果是,是{an}中的第几项?如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}中,若a7=m,a14=n,则a12=
 
;2a12=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:8 -
2
3
+20+log26+log2 
1
12
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

“φ=2kπ+
π
2
,k∈Z”是“函数f(x)=cos(2x+φ)的图象过原点”的(  )
A、充分不必要条件
B、必要不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

为了得到函数y=
2
sin3x的图象,可以将函数y=sin3x+cos3x的图象(  )
A、向右平移
π
12
个单位长
B、向右平移
π
4
个单位长
C、向左平移
π
12
个单位长
D、向左平移
π
4
个单位长

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,点E为AB边的中点,点F为AC边的中点,BF交CE于点G,若
AG
=x
AE
+y
AF
,则x+y等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(
π
4
+x)=-
3
5
,x∈(-
π
2
,-
π
4
)求:
(1)tan2x
(2)
2sinx+sin2x
1-tanx
的值.

查看答案和解析>>

同步练习册答案