精英家教网 > 高中数学 > 题目详情
1.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1(a>b>0)$的离心率e=$\frac{\sqrt{3}}{2}$,若椭圆C上任一点T与两交点连线所得的三角形面积的最大值为$\sqrt{3}$.
(1)求椭圆C的方程;
(2)设直线l与椭圆C相交于A,B两点,直线OA,l,OB的斜率分别为k1,k,k2(其中k>0),若k1,k,k2恰好构成公比不为1的等比数列,求k的值.

分析 (1)通过椭圆C上任一点T与两焦点连线所得的三角形面积的最大值为$\sqrt{3}$可知$\sqrt{{a}^{2}-{b}^{2}}$•b=$\sqrt{3}$,结合e=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$=$\frac{\sqrt{3}}{2}$计算即得结论;
(2)通过设直线l的方程为:y=kx+m(其中k>0),A(x1,y1),B(x2,y2),联立直线与椭圆方程、利用韦达定理可知x1+x2=-$\frac{8km}{1+4{k}^{2}}$、x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$、△=16(1+4k2-m2)>0,利用k2=k1k2代入化简计算即得结论.

解答 解:(1)∵椭圆C上任一点T与两焦点连线所得的三角形面积的最大值为$\sqrt{3}$,
∴$\frac{1}{2}•2c•b$=$\sqrt{3}$,即$\sqrt{{a}^{2}-{b}^{2}}$•b=$\sqrt{3}$,
又∵e=$\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}$=$\frac{\sqrt{3}}{2}$,
∴a=2b,ab=2,
解得:a=2,b=1,
∴椭圆C的方程为:$\frac{{x}^{2}}{4}+{y}^{2}=1$;
(2)设直线l的方程为:y=kx+m(其中k>0),A(x1,y1),B(x2,y2),
将直线l的方程代入椭圆方程,消去y整理得:
(1+4k2)x2+8kmx+4m2-4=0,
∴x1+x2=-$\frac{8km}{1+4{k}^{2}}$,x1x2=$\frac{4{m}^{2}-4}{1+4{k}^{2}}$,且△=16(1+4k2-m2)>0,
∵k1,k,k2恰好构成公比不为1的等比数列,
∴k2=k1k2=$\frac{(k{x}_{1}+m)(k{x}_{2}+m)}{{x}_{1}{x}_{2}}$,
即k2•$\frac{4{m}^{2}-4}{1+4{k}^{2}}$=k2•$\frac{4{m}^{2}-4}{1+4{k}^{2}}$+km•(-$\frac{8km}{1+4{k}^{2}}$)+m2
整理得:m2-4k2m2=0,
∵m≠0,
∴k=$\frac{1}{2}$或k=-$\frac{1}{2}$(舍).

点评 本题考查直线与圆锥曲线的关系,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知等腰三角形的底边长为6,一腰长为12,则它的外接圆半径为$\frac{8\sqrt{15}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.圆心在直线x-2y=0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2$\sqrt{3}$,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系中,已知定点P(x0,y0),定直线l:Ax+By+C=0
(1)请写出点P到直线l的距离公式;
(2)试证明这个公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.用[x]表示不超过x的最大整数,例如[-3.5]=-4,[2.3]=2,设函数f(x)=x-[x],则下列结论中正确的序号是③④(要求写出所有正确结论的序号)
①函数f(x)是奇函数
②函数f(x)在实数集R上是增函数
③函数f(x)的值域是[0,1)
④方程f(x)=$\frac{1}{2}$有无数个实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果数列{an}满足a1,a2-a1,a3-a2,…an-an-1(n∈N*)是首项为1,公差为2的等差数列,则an=(  )
A.nB.2n-1C.n2D.2n2-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx-x2+x
(1)求函数f(x)的单调递减区间:
(2)若对于任意的x>0,不等式f(x)≤($\frac{a}{2}$-1)x2+ax-1恒成立,求整数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(1-$\sqrt{x}$)=x,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.比较两数log${\;}_{\frac{1}{4}}$$\frac{8}{7}$,log${\;}_{\frac{1}{5}}$$\frac{6}{5}$的大小.

查看答案和解析>>

同步练习册答案