¶ÔÓÚ¶¨ÒåÓòΪDµÄº¯Êýy=f£¨x£©£¬ÈôͬʱÂú×ãÏÂÁÐÌõ¼þ£º
¢Ùf£¨x£©ÔÚDÄÚµ¥µ÷µÝÔö»òµ¥µ÷µÝ¼õ£»
¢Ú´æÔÚÇø¼ä[a£¬b]⊆D£¬Ê¹f£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòΪ[a£¬b]£»ÄÇô°Ñy=f£¨x£©£¨x¡ÊD£©½Ð±Õº¯Êý£®
£¨1£©Çó±Õº¯Êýy=-x3·ûºÏÌõ¼þ¢ÚµÄÇø¼ä[a£¬b]£»
£¨2£©ÅжϺ¯Êýf(x)=
3
4
x+
1
x
  (x£¾0)
ÊÇ·ñΪ±Õº¯Êý£¿²¢ËµÃ÷ÀíÓÉ£»
£¨3£©Èôy=k+
x+2
ÊDZպ¯Êý£¬ÇóʵÊýkµÄÈ¡Öµ·¶Î§£®
·ÖÎö£º£¨1£©¸ù¾Ýµ¥µ÷ÐÔÒÀ¾Ý±ÕÇø¼äµÄ¶¨ÒåµÈ¼Ûת»¯Îª·½³Ì£¬Ö±½ÓÇó½â£®
£¨2£©ÅжÏÆäÔÚ£¨0£¬+¡Þ£©ÊÇ·ñÓе¥µ÷ÐÔ£¬Ôپݱպ¯ÊýµÄ¶¨ÒåÅжϣ»
£¨3£©¸ù¾Ý±Õº¯ÊýµÄ¶¨ÒåÒ»¶¨´æÔÚÇø¼ä[a£¬b]£¬Óɶ¨ÒåÖ±½Óת»¯Çó½â¼´¿É£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒ⣬y=-x3ÔÚ[a£¬b]Éϵݼõ£¬
Ôò
b=-a3
a=-b3
b£¾a
½âµÃ
a=-1
b=1
£¨4·Ö£©
ËùÒÔ£¬ËùÇóµÄÇø¼äΪ[-1£¬1]£»£¨5·Ö£©
£¨2£©È¡x1=1£¬x2=10£¬Ôòf(x1)=
7
4
£¼
76
10
=f(x2)
£¬
¼´f£¨x£©²»ÊÇ£¨0£¬+¡Þ£©Éϵļõº¯Êý£®
È¡x1=
1
10
£¬x2=
1
100
£¬
f(x1)=
3
40
+10£¼
3
400
+100=f(x2)
£¬
¼´f£¨x£©²»ÊÇ£¨0£¬+¡Þ£©ÉϵÄÔöº¯Êý
ËùÒÔ£¬º¯ÊýÔÚ¶¨ÒåÓòÄÚ²»µ¥µ÷µÝÔö»òµ¥µ÷µÝ¼õ£¬
´Ó¶ø¸Ãº¯Êý²»ÊDZպ¯Êý£»£¨9·Ö£©
£¨3£©Èôy=k+
x+2
ÊDZպ¯Êý£¬Ôò´æÔÚÇø¼ä[a£¬b]£¬
ÔÚÇø¼ä[a£¬b]ÉÏ£¬º¯Êýf£¨x£©µÄÖµÓòΪ[a£¬b]£¬
¼´
a=k+
a+2
b=k+
b+2
£¬¡àa£¬bΪ·½³Ìx=k+
x+2
µÄÁ½¸öʵÊý¸ù£¬
¼´·½³Ìx2-£¨2k+1£©x+k2-2=0£¨x¡Ý-2£¬x¡Ýk£©ÓÐÁ½¸ö²»µÈµÄʵ¸ù£¨11·Ö£©
µ±k¡Ü-2ʱ£¬ÓÐ
¡÷£¾0
f(-2)¡Ý0
2k+1
2
£¾-2
£¬½âµÃ-
9
4
£¼k¡Ü-2
£¬£¨13·Ö£©
µ±k£¾-2ʱ£¬ÓÐ
¡÷£¾0
f(k)¡Ý0
2k+1
2
£¾k
£¬Î޽⣬£¨15·Ö£©
×ÛÉÏËùÊö£¬k¡Ê(-
9
4
£¬-2]
£®
µãÆÀ£º¿¼²éº¯ÊýµÄµ¥µ÷ÐÔ¼°Ð¶¨ÒåÐͺ¯ÊýµÄÀí½â£¬ÒÔ¼°ÎÊÌâµÄµÈ¼Ûת»¯ÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚ¶¨ÒåÓòΪDµÄº¯Êýy=f£¨x£©£¬Èç¹û´æÔÚÇø¼ä[m£¬n]⊆D£¬Í¬Ê±Âú×㣺
¢Ùf£¨x£©ÔÚ[m£¬n]ÄÚÊǵ¥µ÷º¯Êý£»
¢Úµ±¶¨ÒåÓòÊÇ[m£¬n]ʱ£¬f£¨x£©µÄÖµÓòÒ²ÊÇ[m£¬n]£®Ôò³Æ[m£¬n]ÊǸú¯ÊýµÄ¡°ºÍгÇø¼ä¡±£®
£¨1£©ÇóÖ¤£ºº¯Êýy=g(x)=3-
5
x
²»´æÔÚ¡°ºÍгÇø¼ä¡±£®
£¨2£©ÒÑÖª£ºº¯Êýy=
(a2+a)x-1
a2x
£¨a¡ÊR£¬a¡Ù0£©ÓС°ºÍгÇø¼ä¡±[m£¬n]£¬µ±a±ä»¯Ê±£¬Çó³ön-mµÄ×î´óÖµ£®
£¨3£©Ò×Öª£¬º¯Êýy=xÊÇÒÔÈÎÒ»Çø¼ä[m£¬n]ΪËüµÄ¡°ºÍгÇø¼ä¡±£®ÊÔÔÙ¾ÙÒ»ÀýÓС°ºÍгÇø¼ä¡±µÄº¯Êý£¬²¢Ð´³öËüµÄÒ»¸ö¡°ºÍгÇø¼ä¡±£®£¨²»ÐèÖ¤Ã÷£¬µ«²»ÄÜÓñ¾ÌâÒÑÌÖÂÛ¹ýµÄy=x¼°ÐÎÈçy=
bx+c
ax
µÄº¯ÊýΪÀý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚ¶¨ÒåÓòΪDµÄº¯Êýf£¨x£©£¬Èô´æÔÚÇø¼äM=[a£¬b]⊆D£¨a£¼b£©£¬Ê¹µÃ{y|y=f£¨x£©£¬x¡ÊM}=M£¬Ôò³ÆÇø¼äMΪº¯Êýf£¨x£©µÄ¡°µÈÖµÇø¼ä¡±£®¸ø³öÏÂÁÐÈý¸öº¯Êý£º
¢Ùf(x)=(
12
)x
£»   ¢Úf£¨x£©=x3£»    ¢Ûf£¨x£©=log2x+1
Ôò´æÔÚ¡°µÈÖµÇø¼ä¡±µÄº¯ÊýµÄ¸öÊýÊÇ
2
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚ¶¨ÒåÓòΪDµÄº¯Êýy=f£¨x£©£¬ÈôͬʱÂú×ãÏÂÁÐÌõ¼þ£º¢Ùf£¨x£©ÔÚDÄÚµ¥µ÷µÝÔö»òµ¥µ÷µÝ¼õ£»¢Ú´æÔÚÇø¼ä[a£¬b]⊆D£¬Ê¹f£¨x£©ÔÚ[a£¬b]ÉϵÄÖµÓòΪ[a£¬b]£»ÄÇô°Ñy=f£¨x£©£¨x¡ÊD£©½Ð±Õº¯Êý£®
£¨1£©Çó±Õº¯Êýy=-x3·ûºÏÌõ¼þ¢ÚµÄÇø¼ä[a£¬b]£»
£¨2£©ÅжϺ¯Êýf£¨x£©=
3
4
x+
1
x
£¨x£¾0£©ÊÇ·ñΪ±Õº¯Êý£¿²¢ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•³çÃ÷ÏØһģ£©¶¨Ò壺¶ÔÓÚ¶¨ÒåÓòΪDµÄº¯Êýf£¨x£©£¬Èç¹û´æÔÚt¡ÊD£¬Ê¹µÃf£¨t+1£©=f£¨t£©+f£¨1£©³ÉÁ¢£¬³Æº¯Êýf£¨x£©ÔÚDÉÏÊÇ¡°T¡±º¯Êý£®ÒÑÖªÏÂÁк¯Êý£º
¢Ùf£¨x£©=
1x
£»¡¡
¢Úf£¨x£©=log2£¨x2+2£©£»
¢Ûf£¨x£©=2x£¨x¡Ê£¨0£¬+¡Þ£©£©£»¡¡
¢Üf£¨x£©=cos¦Ðx£¨x¡Ê[0£¬1]£©£¬ÆäÖÐÊôÓÚ¡°T¡±º¯ÊýµÄÐòºÅÊÇ
¢Û
¢Û
£®£¨Ð´³öËùÓÐÂú×ãÒªÇóµÄº¯ÊýµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶ÔÓÚ¶¨ÒåÓòΪDµÄº¯Êýf£¨x£©£¬ÈôͬʱÂú×ãÏÂÁÐÌõ¼þ£º¢Ùf£¨x£©ÔÚDÄÚÓе¥µ÷ÐÔ£»¢Ú´æÔÚÇø¼ä[a£¬b]⊆D£¬Ê¹f£¨x£©ÔÚÇø¼ä[a£¬b]ÉϵÄÖµÓòҲΪ[a£¬b]£¬Ôò³Æf£¨x£©ÎªDÉϵġ°ºÍг¡±º¯Êý£¬[a£¬b]Ϊº¯Êýf£¨x£©µÄ¡°ºÍг¡±Çø¼ä£®
£¨¢ñ£©Çó¡°ºÍг¡±º¯Êýy=x3·ûºÏÌõ¼þµÄ¡°ºÍг¡±Çø¼ä£»
£¨¢ò£©ÅжϺ¯Êýf(x)=x+
4
x
(x£¾0)
ÊÇ·ñΪ¡°ºÍг¡±º¯Êý£¿²¢ËµÃ÷ÀíÓÉ£®
£¨¢ó£©Èôº¯Êýg(x)=
x+4
+m
ÊÇ¡°ºÍг¡±º¯Êý£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸