精英家教网 > 高中数学 > 题目详情
1.已知在三棱锥S-ABC中,P、Q分别是△SAC和△SAB的重心,试判断BC与平面APQ的位置关系并加以证明.

分析 根据三角形的重心定理,可得SP=$\frac{2}{3}$SM,SQ=$\frac{2}{3}$SN,因此由比例线段证出PQ∥MN.在△ABC中利用中位线定理证出MN∥BC,可得直线PQ与BC的位置关系是平行,即可得出结论.

解答 解:BC∥平面APQ.
∵△SAC中,P为的重心,
∴点P在△SAC中线SM上,且满足SP=$\frac{2}{3}$SM
同理可得:△SAB中,点Q在中线SN上,且满足SQ=$\frac{2}{3}$SN
∴GPQ∥MN
∵MN是△ABC的中位线,∴MN∥BC
因此可得PQ∥BC,
∵BC?平面APQ,PQ?平面APQ,
∴BC∥平面APQ.

点评 本题给出三棱锥两个侧面的重心的连线,判定它与底面相对棱的位置关系,着重考查了三角形重心的性质、比例线段的性质和三角形中位线定理等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin2ωx+cos2ωx.(ω>0)的最小正周期为4π,
(Ⅰ)求ω的值及函数f(x)的单调递减区间;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标向右平行移动$\frac{π}{4}$个单位长度,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)在$[{\frac{π}{4},\frac{7π}{4}}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,一个正三棱柱的左视图是边长为$\sqrt{3}$的正方形,则它的外接球的表面积等于(  )
A.B.$\frac{25π}{3}$C.D.$\frac{28π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.点M($\frac{π}{2},m$)在函数y=sinx的图象上,则m等于(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,a,b,c分别为内角A,B,C的对边,已知b=6,且(2c-a)cosB=bcosA,若△ABC的两条中线AE、CF相交于点D,则四边形BEDF的面积的最大值为3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设a∈{-2,-$\frac{3}{5}$,-$\frac{1}{2}$,-$\frac{1}{3}$,$\frac{1}{2}$,1,2,3},已知幂函数y=xa是奇函数,且在区间(0,+∞)上是减函数,则满足条件的a的值为$-\frac{3}{5}$或$-\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=-x2+4x,x∈[0,1],则f(x)的最大值为3,最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若tan2α+cot2α=2,则sinαcosα=$-\frac{1}{2}$或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow{a}$=(2,-3,1),$\overrightarrow{b}$=(2,0,3),$\overrightarrow{c}$=(0,0,2).求:
(1)$\overrightarrow{a}$•($\overrightarrow{b}$+$\overrightarrow{c}$);
(2)$\overrightarrow{a}$+6$\overrightarrow{b}$-8$\overrightarrow{c}$.

查看答案和解析>>

同步练习册答案