精英家教网 > 高中数学 > 题目详情
11.已知函数$f(x)=A(sin\frac{x}{2}cosφ+cos\frac{x}{2}sinφ)(A>0,0<φ<\frac{π}{2})$的最大值是2,且f(0)=1.
(Ⅰ)求φ的值;
(Ⅱ)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,若a=2,f(2A)=$\sqrt{3}$,2bsinC=$\sqrt{2}$c.求△ABC的面积.

分析 (Ⅰ)f(x)解析式利用两角和与差的正弦函数公式化简,根据f(0)=1,及A的值求出φ的值即可;
(Ⅱ)由第一问确定出的f(x)解析式,结合f(2A)=$\sqrt{3}$,求出A的度数,已知等式利用正弦定理化简求出sinB的值,再由a的值,利用正弦定理求出b的值,由A与B的度数求出C的度数,确定出sinC的值,利用三角形面积公式即可求出三角形ABC面积.

解答 解:(Ⅰ)f(x)=A(sin$\frac{x}{2}$cosφ+cos$\frac{x}{2}$sinφ)=Asin($\frac{x}{2}$+φ),
由于f(x)的最大值为2,且f(0)=1,得到A=2,2sinφ=1,即sinφ=$\frac{1}{2}$,
∵0<φ<$\frac{π}{2}$,∴φ=$\frac{π}{6}$;
(Ⅱ)由(Ⅰ)得:f(x)=2sin($\frac{x}{2}$+$\frac{π}{6}$),
由f(2A)=$\sqrt{3}$,得到2sin(A+$\frac{π}{6}$)=$\sqrt{3}$,即sin(A+$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$,
∵A为锐角,
∴A+$\frac{π}{6}$=$\frac{π}{3}$,即A=$\frac{π}{6}$,
把2bsinC=$\sqrt{2}$c利用正弦定理化简得:2sinBsinC=$\sqrt{2}$sinC,即sinB=$\frac{\sqrt{2}}{2}$,即B=$\frac{π}{4}$,
∵a=2,
∴由正弦定理$\frac{a}{sinA}$=$\frac{b}{sinB}$得:b=$\frac{asinB}{sinA}$=$\frac{2×\frac{\sqrt{2}}{2}}{\frac{1}{2}}$=2$\sqrt{2}$,C=$\frac{7π}{12}$,
∵sinC=sin($\frac{π}{3}$+$\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$×$\frac{\sqrt{2}}{2}$+$\frac{1}{2}$×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$,
则S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×2×2$\sqrt{2}$×$\frac{\sqrt{6}+\sqrt{2}}{4}$=$\sqrt{3}$+1.

点评 此题属于解三角形题型,涉及的知识有:正弦定理,三角形面积公式,两角和与差的正弦函数公式,以及特殊角的三角函数值,熟练掌握公式及定理是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.已知圆x2+y2=4上存在两点到点(m,m)(m>0)的距离为1,则实数m的取值范围为$\frac{\sqrt{2}}{2}$<a<$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若函数f(x)满足$f(x)+2f(\frac{1}{x})={log_2}x$,则f(2)的值(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.解答下列问题
(1)计算(-$\frac{7}{8}$)0+($\frac{1}{8}$)${\;}^{-\frac{1}{3}}$+$\root{4}{(3-π)^{4}}$的值;
(2)已知2a=5b=100,求$\frac{a+b}{ab}$ 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.曲线C是平面内到定点F(0,2)和定直线:y=-2的距离之和等于6的点的轨迹,给出下列四个结论:①曲线C过坐标原点; ②曲线C关于y轴对称; ③若点P(x,y)在曲线C,则|y|≤2;
④若点P(x,y)在曲线C,则|PF|的最大值是6.其中,所有正确结论的序号是②④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知不等式组$\left\{\begin{array}{l}{x^2}+\sqrt{2}ax+5≥\frac{1}{3}\\{x^2}+\sqrt{2}ax+5≤\frac{7}{2}\end{array}\right.$有唯一解,则实数a=±$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知圆锥高为h,底面圆半径、锥高、母线长构成等比数列,则圆锥的侧面积是(  )
A.$\frac{1}{3}π{h^2}$B.$\frac{1}{2}π{h^2}$C.πh2D.2πh2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=${log_{0.5}}(4-3x-{x^2})$的递增区间是$(-\frac{3}{2},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.定义在R上的偶函数在区间(-∞,0]上单调递增,解不等式:f(a+1)<f(a2+2a+1).

查看答案和解析>>

同步练习册答案