精英家教网 > 高中数学 > 题目详情

【题目】已知,点满足,记点的轨迹为.斜率为的直线过点,且与轨迹相交于两点.

1)求轨迹的方程;

2)求斜率的取值范围;

3)在轴上是否存在定点,使得无论直线绕点怎样转动,总有成立?如果存在,求出定点;如果不存在,请说明理由.

【答案】1;(2;(3)存在,.

【解析】

1)根据双曲线的定义即可求得方程;

2)联立直线与双曲线方程,转化成方程有解问题;

3)假设存在点,联立直线和双曲线整理成二次方程,根据结合韦达定理求解.

1)因为,点满足

所以点的轨迹为以为焦点,实轴长为2的双曲线的右支,

设其方程,则

所以轨迹的方程:

2)斜率为的直线过点,直线方程为,代入

,即有两个不等正根

,当时,

即不等式组的解:

所以

3)假设存在,设点,使

由(2):斜率为的直线过点,直线方程为,代入

,即有两个不等正根

,所以

,对恒成立,

所以,解得,即

当直线斜率不存在时,直线方程,此时

,仍然满足

所以这样的点存在,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是双曲线的两个焦点,点在双曲线上,且,则的面积为________;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等边三角形的边长为边的中点,沿折成直二面角,则三棱锥的外接球的表面积为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络平台从购买该平台某课程的客户中,随机抽取了100位客户的数据,并将这100个数据按学时数,客户性别等进行统计,整理得到如表:

学时数

男性

18

12

9

9

6

4

2

女性

2

4

8

2

7

13

4

(1)根据上表估计男性客户购买该课程学时数的平均值(同一组中的数据用该组区间的中点值作代表,结果保留小数点后两位);

(2)从这100位客户中,对购买该课程学时数在20以下的女性客户按照分层抽样的方式随机抽取7人,再从这7人中随机抽取2人,求这2人购买的学时数都不低于15的概率.

(3)将购买该课程达到25学时及以上者视为“十分爱好该课程者”,25学时以下者视,为“非十分爱好该课程者”.请根据已知条件完成以下列联表,并判断是否有99.9%的把握认为“十分爱好该课程者”与性别有关?

非十分爱好该课程者

十分爱好该课程者

合计

男性

女性

合计

100

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆上的动点到一个焦点的最远距离与最近距离分别是的左顶点为轴平行的直线与椭圆交于两点,过两点且分别与直线垂直的直线相交于点.

1)求椭圆的标准方程;

2)证明点在一条定直线上运动,并求出该直线的方程;

3)求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了组建一支业余足球队,在高一年级随机选取50名男生测量身高,发现被测男生的身高全部在之间,将测量结果按如下方式分成六组:第1,第2,第6,如图是按上述分组得到的频率分布直方图,以频率近似概率.

1)若学校要从中选1名男生担任足球队长,求被选取的男生恰好在第5组或第6组的概率;

2)试估计该校高一年级全体男生身高的平均数(同一组中的数据用该组区间的中点值代表)与中位数;

3)现在从第5与第6组男生中选取两名同学担任守门员,求选取的两人中最多有1名男生来自第5组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年“双十一”全网销售额达亿元,相当于全国人均消费元,同比增长,监测参与“双十一”狂欢大促销的家电商平台有天猫、京东、苏宁易购、网易考拉在内的综合性平台,有拼多多等社交电商平台,有敦煌网、速卖通等出口电商平台.某大学学生社团在本校名大一学生中采用男女分层抽样,分别随机调查了若干个男生和个女生的网购消费情况,制作出男生的频率分布表、直方图(部分)和女生的茎叶图如下:

男生直方图

分组(百元)

男生人数

频率

合计

女生茎叶图

(1)请完成频率分布表的三个空格,并估计该校男生网购金额的中位数(单位:元,精确到个位).

(2)若网购为全国人均消费的三倍以上称为“剁手党”,估计该校大一学生中的“剁手党”人数为多少?从抽样数据中网购不足元的同学中随机抽取人发放纪念品,则人都是女生的概率为多少?

(3)用频率估计概率,从全市所有高校大一学生中随机调查人,求其中“剁手党”人数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面为直角梯形,,且,平面底面的中点,为等边三角形,是棱上的一点,设不重合).

1)若平面,求的值;

2)当时,求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,,点为线段上的动点,则下列结论正确的是(

A.时,三点共线

B.时,

C.时,平面

D.时,平面

查看答案和解析>>

同步练习册答案