精英家教网 > 高中数学 > 题目详情
17.如图,在正四面体A-BCD中,所有棱长为1,E,F分别是AC,AD上的动点,求截面△BEF周长的最小值.

分析 首先,展开三棱锥,然后,两点间的连接线BB'即是截面周长的最小值,然后,求解其距离即可.

解答 解:把正四面体A-BCD的侧面展开,
两点间的连接线BB'即是截面周长的最小值.
∵AB=AB′=1,∠BAB′=120°,
∴截面周长最小值是BB’=$\sqrt{1+1-2×1×1×(-\frac{1}{2})}$=$\sqrt{3}$.

点评 本题重点考查了空间中的距离最值问题,属于中档题.注意等价转化思想的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.如图所示,PA⊥平面ABCD,底面ABCD为菱形,$∠ABC=\frac{π}{3}$,PA=AB=4,AC交BD于O,点N是PC的中点.
(1)求证:BD⊥平面PAC;
(2)求平面ANC与平面ANB所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=e2x+ax在(0,+∞)上单调递增,则实数a的取值范围为(  )
A.[-1,+∞)B.(-1,+∞)C.[-2,+∞)D.(-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆的中心在原点,焦点为F1(0,-2$\sqrt{2}$),F2(0,2$\sqrt{2}$),且离心率e=$\frac{2\sqrt{2}}{3}$.
(1)求椭圆的方程;
(2)直线l(与坐标轴不平行)与椭圆交于不同的两点A、B,且线段AB中点的横坐标为-$\frac{1}{2}$,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等比数列{an}的前n项和为Sn,${a_2}=-\frac{1}{2}$,且满足Sn,Sn+2,Sn+1成等差数列,则a3等于$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在平面内,$\overrightarrow{A{B_1}}⊥\overrightarrow{A{B_2}},|\overrightarrow{O{B_1}}|=3,|\overrightarrow{O{B_2}}|=4,\overrightarrow{AP}=\overrightarrow{A{B_1}}+\overrightarrow{A{B_2}}$,若$1<|\overrightarrow{OP}|<2$,则$|\overrightarrow{OA}|$的取值范围是(  )
A.$(2\sqrt{3},\sqrt{17})$B.$(\sqrt{17},\sqrt{21})$C.$(\sqrt{17},2\sqrt{6})$D.$(\sqrt{21},2\sqrt{6})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin(ωx+ϕ),x∈R,其中$(A>0,ω>0,0<ϕ<\frac{π}{2})$的周期为π,且图象上一个最低点为$M(\frac{2π}{3},-2)$.
(1)求f(x)的解析式;
(2)当$x∈[0,\frac{π}{12}]$时,求f(x)的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$y={a^{{x^2}-3x+2}}({a>1})$的单调增区间是[$\frac{3}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知在△ABC所在平面内有两点P、Q,满足$\overrightarrow{PA}$+$\overrightarrow{PC}$=0,$\overrightarrow{QA}$+$\overrightarrow{QB}$+$\overrightarrow{QC}$=$\overrightarrow{BC}$,若|$\overrightarrow{AB}$|=4,|$\overrightarrow{AC}$|=2,S△APQ=$\frac{2}{3}$,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的值为±4$\sqrt{3}$.

查看答案和解析>>

同步练习册答案