精英家教网 > 高中数学 > 题目详情

已知函数f(x)是定义在R上的奇函数,且f(x)的图象关于直线x=1对称.
(1)求证:f(x)是周期为4的周期函数;
(2)若(0<x≤1),求x∈[-5,-4]时,函数f(x)的解析式.

(1)见解析;(2).

解析试题分析:(1)只需证明.由函数f(x)的图象关于直线对称,可得
即有.根据函数是定义在R上的奇函数,故有=-
从而由,得到,即f(x)是周期为4的周期函数.
(2)首先由函数f(x)是定义在R上的奇函数,得到f(0)=0.
根据x∈[-1,0)时,-x∈(0,1],f(x)=-f(-x)=.    
利用函数的周期性得到,x∈[-5,-4]时,函数f(x)的解析式.
试题解析:(1)证明:由函数f(x)的图象关于直线对称,有
即有                                     2分
又函数f(x)是定义在R上的奇函数,故有=-
,从而,即是周期为4的周期函数.                               6分
(2)由函数f(x)是定义在R上的奇函数,可知f(0)=0.
时,.    
时,                                    9分
时,.
从而,时,函数f(x)的解析式为.             12分
考点:函数的奇偶性、周期性

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径毫米,滴管内液体忽略不计.

(1)如果瓶内的药液恰好分钟滴完,问每分钟应滴下多少滴?
(2)在条件(1)下,设输液开始后(单位:分钟),瓶内液面与进气管的距离为(单位:厘米),已知当时,.试将表示为的函数.(注:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,且同时满足以下三个条件:①;②对任意的,都有;③当时总有
(1)试求的值;
(2)求的最大值;
(3)证明:当时,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知点,函数的图象上的动点轴上的射影为,且点在点的左侧.设的面积为.

(Ⅰ)求函数的解析式及的取值范围;
(Ⅱ)求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过40辆/千米时,车流速度为80千米/小时.研究表明:当时,车流速度是车流密度的一次函数.(1)当时,求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位: 辆/小时)f ,可以达到最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为实数,函数.
(Ⅰ)若,求的取值范围;
(Ⅱ)求函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数满足,对任意都有,且
(1)求函数的解析式;
(2)是否存在实数,使函数上为减函数?若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

记数列{}的前n项和为为,且+n=0(n∈N*)恒成立.
(1)求证:数列是等比数列;
(2)已知2是函数f(x)=+ax-1的零点,若关于x的不等式f(x)≥对任意n∈N﹡在x∈(-∞,λ]上恒成立,求实常数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在区间上有最大值4,最小值1,
(Ⅰ)求的值。
(Ⅱ)设不等式在区间上恒成立,求实数k的取值范围?

查看答案和解析>>

同步练习册答案