精英家教网 > 高中数学 > 题目详情
如图所示,正方体ABCD—A1B1C1D1中,侧面对角线AB1,BC1上分别有两点E,F,且B1E=C1F.求证:EF∥平面ABCD.
证明略
  方法一 分别过E,F作EM⊥AB于M,FN⊥BC于N,连接MN.

∵BB1⊥平面ABCD,
∴BB1⊥AB,BB1⊥BC,
∴EM∥BB1,FN∥BB1
∴EM∥FN.
又∵B1E=C1F,∴EM=FN,
故四边形MNFE是平行四边形,∴EF∥MN.
又MN平面ABCD,EF平面ABCD,
所以EF∥平面ABCD.
方法二 过E作EG∥AB交BB1于G,
连接GF,则
∵B1E=C1F,B1A=C1B,
,∴FG∥B1C1∥BC,
又EG∩FG=G,AB∩BC=B,
∴平面EFG∥平面ABCD,而EF平面EFG,
∴EF∥平面ABCD.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,是平行四边形,点是平面外一点,的中点,在上取一点,过作平面交平面
求证:
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(1)直线B1F是否平行于平面D1DE?
(2)求二面角C1―BD1―B1的大小;
(3)若点P是棱AB上的一个动点,求四面体DPA1C1体积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如右图,在直四棱柱A1B1C1D1-DABC中,当底面四边形ABCD满足条件______________时,有A1BB1D1.?(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

a,b为不垂直的异面直线,α是一个平面,则abα上的射影有可能是______________.
①两条平行直线;
②两条互相垂直的直线;
③同一条直线;
④一条直线及其外一点.
在上面结论中,正确的编号是_________.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点.
(1)求证:平面AED⊥平面A1FD1
(2)在AE上求一点M,使得A1M⊥平面ADE.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱ABC-A1B1C1的侧棱AA1⊥底面ABC,∠ACB=90°,E是棱CC1上动点,F是AB中点,AC=1,BC=2,AA1=4.
(1)当E是棱CC1中点时,求证:CF平面AEB1
(2)在棱CC1上是否存在点E,使得二面角A-EB1-B的余弦值是
2
17
17
,若存在,求CE的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是两条异面直线,,那么的位置关系____________________。

查看答案和解析>>

同步练习册答案