精英家教网 > 高中数学 > 题目详情
10.如图,四边形ABCD是矩形,AB=1,$AD=\sqrt{2}$,E是AD的中点,BE与AC交于点F,GF⊥平面ABCD.
(Ⅰ)求证:AF⊥面BEG;
(Ⅱ)若AF=FG,求二面角E-AG-B所成角的余弦值.

分析 (Ι)推导出AEF∽△CBF,从而AC⊥BE,再求出AC⊥GF,由此能证明AF⊥平面BEG.
(Ⅱ)以点F为原点,FA,FE,FG所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,利用向量法能求出二面角E-AG-B所成角的余弦值.

解答 证明:(Ι)∵四边形ABCD为矩形,∴△AEF∽△CBF,
∴$\frac{AF}{CF}=\frac{EF}{BF}=\frac{AE}{BC}=\frac{1}{2}$…(1分)
又∵矩形ABCD中,$AB=1,AD=\sqrt{2}$,∴$AE=\frac{{\sqrt{2}}}{2},AC=\sqrt{3}$
在Rt△BEA中,$BE=\sqrt{A{B^2}+A{E^2}}=\frac{{\sqrt{6}}}{2}$,∴$AF=\frac{1}{3}AC=\frac{{\sqrt{3}}}{3}$,$BF=\frac{2}{3}BE=\frac{{\sqrt{6}}}{3}$
在△ABF中,$A{F^2}+B{F^2}={(\frac{{\sqrt{3}}}{3})^2}+{(\frac{{\sqrt{6}}}{3})^2}=1=A{B^2}$
∴∠AFB=90°,即AC⊥BE…(2分)
∵GF⊥平面ABCD,AC?平面ABCD,∴AC⊥GF…(3分)
又∵BE∩GF=F,BE,GF?平面BCE,
∴AF⊥平面BEG…(4分)
解:(Ⅱ)由(Ι)得AD,BE,FG两两垂直,
以点F为原点,FA,FE,FG所在直线分别为x轴,y轴,z轴建立如图所示的空间直角坐标系,
则$A({\frac{{\sqrt{3}}}{3},0,0})$,$B({0,-\frac{{\sqrt{6}}}{3},0})$,$G({0,0,\frac{{\sqrt{3}}}{3}})$,$E({0,\frac{{\sqrt{6}}}{6},0})$,
$\overrightarrow{AB}=({-\frac{{\sqrt{3}}}{3},-\frac{{\sqrt{6}}}{3},0})$,$\overrightarrow{AG}=({-\frac{{\sqrt{3}}}{3},0,\frac{{\sqrt{3}}}{3}})$,$\overrightarrow{EG}=({0,-\frac{{\sqrt{6}}}{6},\frac{{\sqrt{3}}}{3}})$,$\overrightarrow{AE}=({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{6}}}{6},0})$…(6分)
设$\overrightarrow n=(x,y,z)$是平面ABG的法向量,
则$\left\{{\begin{array}{l}{\overrightarrow{AB}•\overrightarrow n=0}\hfill\\{\overrightarrow{AG}•\overrightarrow n=0}\hfill\end{array}}\right.$,即$\left\{{\begin{array}{l}{-\frac{{\sqrt{3}}}{3}x-\frac{{\sqrt{6}}}{3}y=0}\hfill\\{-\frac{{\sqrt{3}}}{3}x+\frac{{\sqrt{3}}}{3}z=0}\hfill\end{array}}\right.$,取$x=\sqrt{2}$,得$\overrightarrow n=(\sqrt{2},-1,\sqrt{2})$…(8分)
设$\overrightarrow m=(x,y,z)$是平面AEG的法向量,
则$\left\{{\begin{array}{l}{\overrightarrow{AE}•\overrightarrow n=0}\hfill\\{\overrightarrow{AG}•\overrightarrow n=0}\hfill\end{array}}\right.$,即$\left\{{\begin{array}{l}{-\frac{{\sqrt{3}}}{3}x+\frac{{\sqrt{6}}}{6}y=0}\hfill\\{-\frac{{\sqrt{3}}}{3}x+\frac{{\sqrt{3}}}{3}z=0}\hfill\end{array}}\right.$,取x=1,得$\overrightarrow m=(1,\sqrt{2},1)$…10分
设平面AEG与平面ABG所成角的大小为θ,
则$|{cosθ}|=\frac{{|{\overrightarrow m•\overrightarrow n}|}}{{|{\overrightarrow m}||{\overrightarrow n}|}}=\frac{{\sqrt{10}}}{10}$…(11分)
∵平面AEG与平面ABG成钝二面角
∴二面角E-AG-B所成角的余弦值为$-\frac{{\sqrt{10}}}{10}$.….(12分)

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=log0.5(x2-ax+4a)在[2,+∞)上单调递减,则a的取值范围是(-2,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知y2=8x的焦点为F,则过F点且倾斜角为60°的直线被抛物线截得的弦长为(  )
A.8B.$4\sqrt{3}$C.$\frac{{4\sqrt{3}}}{3}$D.$\frac{32}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数$f(x)=\sqrt{x+1}+\frac{1}{x-3}$的定义域为(  )
A.(-3,0]B.(-3,1]C.[-1,3)∪(3,+∞)D.[-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知在函数$f(x)=\frac{1}{3}{x^3}-2{x^2}+ax({a∈R})$的所有切线中,有且仅有一条切线l与直线y=x垂直.
(1)求a的值和切线l的方程;
(2)设曲线y=f(x)在任一点处的切线倾斜角为α,求α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.己知命题p:方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}=1$表示焦点在y轴的椭圆;命题q:关于x的不等式x2-2x+m>0的解集是R;
若“p∧q”是假命题,“p∨q”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z=$\frac{2-i}{1+i}$(i为虚数单位),则复数z的共轭复数$\overline{z}$在复平面上所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1,F2,离心率为$\frac{\sqrt{3}}{3}$,过F2的直线l交C于A,B两点,若△AF1B的周长为4$\sqrt{3}$,则C的方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$,此时椭圆C的一条弦被(1,1)平分,那么这条弦所在的直线方程为2x+3y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.四个命题:
①?x∈R,x2-3x+2>0恒成立;
②?x∈Q,x2=2;
③?x∈R,x2-1=0;
④?x∈R,4x2>2x-1+3x2
其中真命题的个数为1.

查看答案和解析>>

同步练习册答案