【题目】如图,在四棱锥中,底面为平行四边形,已知,,于.
(1)求证:;
(2)若平面平面,且,求二面角的余弦值.
【答案】(1)见证明;(2)
【解析】
(1)连接,证明,可得,由,得,由线面垂直的判定可得平面,从而得到;
(2)由平面,平面平面,可得,,两两垂直,以为原点,,,分别为轴,轴,轴建立空间直角坐标系,分别求出平面与平面的一个法向量,由两法向量所成角的余弦值可得二面角的余弦值.
(1)连接,
∵,,是公共边,
∴,
∴,
∵,∴,
又平面,平面,
∴平面,
又平面,
∴.
(2)由平面,平面平面,
所以,,两两垂直,以为原点,,,分别为轴,轴,轴建立空间直角坐标系,如图所示
所以,,,
则,,,,,.
设平面的法向量为,
则,即,令,则,
又平面的一个法向量为,
设二面角所成的平面角为,
则,
显然二面角是锐角,故二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】已知圆O:,直线l:.
若直线l与圆O交于不同的两点A,B,当时,求实数k的值;
若,P是直线上的动点,过P作圆O的两条切线PC、PD,切点分别为C、D,试探究:直线CD是否过定点若存在,请求出定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,离心率,点是椭圆上的一个动点,面积的最大值是.
(1)求椭圆的方程;
(2)若是椭圆上不重合的四点,与相交于点,,且,求此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“剑桥学派”创始人之一数学家哈代说过:“数学家的造型,同画家和诗人一样,也应当是美丽的”;古希腊数学家毕达哥拉斯创造的“黄金分割”给我们的生活处处带来美;我国古代数学家赵爽创造了优美“弦图”.“弦图”是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,则等于( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)在圆内直径所对的圆周角是直角.此定理在椭圆内(以焦点在轴上的标准形式为例)可表述为“过椭圆的中心的直线交椭圆于两点,点是椭圆上异于的任意一点,当直线,斜率存在时,它们之积为定值.”试求此定值;
(2)在圆内垂直于弦的直径平分弦.类比(1)将此定理推广至椭圆,不要求证明.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.下列命题:( )
①函数的图象关于原点对称; ②函数是周期函数;
③当时,函数取最大值;④函数的图象与函数的图象没有公共点,其中正确命题的序号是
(A)①③ (B)②③ (C)①④ (D)②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点,且在轴上截得的弦长为4.
(1)求动圆圆心的轨迹的方程;
(2)点为轨迹上任意一点,直线为轨迹上在点处的切线,直线交直线于点,过点作交轨迹于点,求的面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com