精英家教网 > 高中数学 > 题目详情
(2012•南宁模拟)已知椭圆W的中心在原点,焦点在x轴上,离心率为
6
3
,两条准线间的距离为6,椭圆的左焦点为F,过左焦点与x轴的交点M任作一条斜率不为零的直线l与椭圆W交于不同的两点A、B,点A关于x轴的对称点为C.
(1)求椭圆W的方程;
(2)求证:
CF
FB
(λ∈R)
分析:(1)根据离心率,准线和a,b和c的关系,联立方程求得a,b和c,即可求得椭圆的方程;
(2)根据准线方程可求得M的坐标,设直线l的方程为y=k(x+3),根据椭圆的第二定义判断出B,F,C三点共线,即可证得结论.
解答:(1)解:设椭圆W的方程为:
x2
a2
+
y2
b2
=1(a>b>0),由题意可知
c
a
=
6
3
,a2=b2+c2,2×
a2
c
=6,解得a=
6
,c=2,b=
2
,所以椭圆W的方程为
x2
6
+
y2
2
=1

(2)证明:因为左准线方程为x=-
a2
c
=-3,所以点M坐标为(-3,0).
于是可设直线l的方程为y=k(x+3),点A,B的坐标分别为(x1,y1),(x2,y2),
则点C的坐标为(x1,-y1),y1=k(x1+3),y2=k(x2+3).
由椭圆的第二定义可得
|FB|
|FC|
=
x2+3
x1+3
=
|y2|
|y1|

所以B,F,C三点共线,即
CF
FB
(λ∈R)
点评:本题考查椭圆的标准方程,考查椭圆的定义与性质,解题的关键是熟练运用椭圆的定义与性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•南宁模拟)若函数y=f(x)的图象经过(0,-1),则y=f(x+4)的反函数图象经过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南宁模拟)如图,在多面体ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC是边长为2的等边三角形,AE=1,CD与平面ABDE所成角的正弦值为
6
4

(1)在线段DC上是否存在一点F,使得EF⊥面DBC,若存在,求线段DF的长度,若不存在,说明理由;
(2)求二面角D-EC-B的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南宁模拟)若Sn=1-2+3-4+…+(-1
)
n-1
 
•n,S17+S33+S50等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南宁模拟)已知命题p:
2x
x-1
≤1
,命题q:(x+a)(x-3)<0,若p是q的充分不必要条件,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南宁模拟)从6个运动员中选出4人参加4×100米的接力赛,如果甲、乙两人都不跑第一棒,那么不同的参赛方法的种数为(  )

查看答案和解析>>

同步练习册答案