精英家教网 > 高中数学 > 题目详情
4.四棱锥A-BCDE,底面BCDE为梯形,EB∥DC,DC⊥平面ABC,AC=BC=EB=2DC,∠ACB=90°,AD与平面ABE所成角的正弦值为(  )
A.$\frac{\sqrt{10}}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

分析 利用线面、面面垂直的判定和性质定理得到CQ⊥平面ABE,再利用DP∥CQ可证明DP⊥平面ABE,从而得到∠DAP是所求的线面角.

解答 解:设P,Q分别为AE,AB的中点,
则PQ∥EB,且EB=2PQ,
∴四边形DCQP是平行四边形,
∴DP∥CQ

设在△ABC中,AC=BC=2a,AQ=BQ,
∴CQ⊥AB.
而DC⊥平面ABC,EB∥DC,
∴EB⊥平面ABC.
而EB?平面ABE,
∴平面ABE⊥平面ABC,
∴CQ⊥平面ABE
∴DP⊥平面ABE,
∴直线AD在平面ABE内的射影是AP,
∴直线AD与平面ABE所成角是∠DAP.
在Rt△APD中,AD=$\sqrt{{AC}^{2}+{DC}^{2}}$=$\sqrt{5}$a,
DP=CQ=2asin∠CAQ=2sin30°=a.
∴sin∠DAP=$\frac{DP}{AD}$=$\frac{a}{\sqrt{5}a}$=$\frac{\sqrt{5}}{5}$,
故选:B.

点评 本题考查平面与平面垂直的证明,考查直线与平面所成角的正弦值的求法.解题时要认真审题,合理地化空间问题为平面问题,注意空间思维能力和推理能力的培养

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设变量x,y满足约束条件$\left\{\begin{array}{l}{x-y≤1}\\{x+y≥2}\\{y≤2}\end{array}\right.$,则目标函数z=x2+y2的取值范围是[2,13].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义在R上的奇函数f(x),当x∈(-∞,0)时xf(x)递减,若a=3f(3),b=(logπ3)•f(logπ3),c=-2f(-2),则a,b,c的大小关系(  )
A.a<c<bB.a<b<cC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设p:“$\frac{a-1}{a-2}$≥0”,q:“圆x2+y2=a2(a>0)与直线3x+4y-5=0相交且与圆(x+3)2+(y+4)2=9外离”,则¬p是q的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,平面PAC⊥平面ABC,AC⊥BC,PE∥CB,M是AE的中点.
(1)若N是PA的中点,求证:平面CMN⊥平面PAC;
(2)若MN∥平面ABC,求证:N是PA的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.等差数列{an}中,前三项分别为x,2x,5x-4,前n项和为Sn,且Sk=110,求x和k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式(1+x)(1+|x|)<0的解集是{x|x<-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设A={x|2a≤x≤a+3},B={x|x<-1或x>5},求a在什么条件下满足:
(1)A∩B=∅;
(2)A∩B=A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知等比数列{an}的前n项和为Sn,则下列一定成立的是(  )
A.若a4>0,则a2016<0B.若a5>0,则a2015<0
C.若a4>0,则S2016>0D.若a5>0,则S2015>0

查看答案和解析>>

同步练习册答案