精英家教网 > 高中数学 > 题目详情
a=1是函数f(x)=a-
22x+1
是奇函数的
充分必要
充分必要
条件.(最准确答案)
分析:先求出函数f(x)为奇函数的等价条件,然后利用充分条件和必要条件的定义进行判断.
解答:解:若f(x)为奇函数,则f(-x)=-f(x),即f(x)+f(-x)=0,
a-
2
2x+1
+a-
2
2-x+1
=0

即2a=
2
2x+1
+
2
2-x+1
=
2+2?2x
2x+1
=
2(1+2x)
2x+1
=2

解得a=1.
∴a=1是函数f(x)=a-
2
2x+1
是奇函数的充分必要条件.
故答案为:充分必要条件.
点评:本题主要考查充分条件和必要条件的判断,利用函数奇偶性的定义是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

“a=1”是“函数f(x)=
2x-a2x+a
在其定义域上为奇函数”的
充分不必要
充分不必要
条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青州市模拟)给出下列六个命题:
①函数f(x)=lnx-2+x在区间(1,e)上存在零点;
②若f′(x0)=0,则函数y=f(x)在x=x0处取得极值;
③若m≥-1,则函数y=log
1
2
(x2-2x-m)
的值域为R;
④“a=1”是“函数f(x)=
a-ex
1+aex
在定义域上是奇函数”的充分不必要条件.
⑤函数y=f(1+x)的图象与函数y=f(l-x)的图象关于y轴对称;
⑥满足条件AC=
3
,∠B=60°
,AB=1的三角形△ABC有两个.
其中正确命题的个数是
①③④⑤
①③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列五个命题:
①若f′(x0)=0,则函数y=f(x)在x=x0处取得极值;
②若m≥-1,则函数f(x)=log
1
2
(x2-2x-m)
的值域为R;
③“a=1”是“函数f(x)=
a-ex
1+aex
在定义域上是奇函数”的充分不必要条件.
④函数y=f(1+x)的图象与函数y=f(l-x)的图象关于y轴对称;
⑤“x1>1且x2>2”是“x1+x2>3且x1x2>2”的充要条件;
其中正确命题的个数是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中:
①函数f(x)=lnx-2+x在区间(1,e)上存在零点;
②若f′(x)=0,则函数y=f(x)在x=x0处取得极值;
③当m≥-1时,则函数y=log
1
2
(x2-2x-m)
的值域为R;
④“a=1”是“函数f(x)=
a-ex
1+aex
在定义域上是奇函数”的充分不必要条件;
其中真命题是
①②③
①②③
.(填上所有正确命题的序号)

查看答案和解析>>

同步练习册答案