精英家教网 > 高中数学 > 题目详情

已知函数g(x)=ax2-2ax+b+1(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=数学公式
(1)求a、b的值;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]上有解,求实数k的取值范围.

解:(1)函数g(x)=ax2-2ax+b+1=a(x-1)2+1+b-a,
因为a>0,所以g(x)在区间[2,3]上是增函数,故 ,解得. ….(6分)
(2)由已知可得f(x)=x+-2,
所以,不等式f(2x)-k•2x≥0可化为 2x+-2≥k•2x
化为 1+-2•≥k,令t=,则 k≤t2-2t+1,因 x∈[-1,1],故 t∈[,2],
记h(t)=t2-2t+1,因为 t∈[,2],故 h(t)min=0,
所以k的取值范围是(-∞,0]. …(14分)
分析:(1)由函数g(x)=a(x-1)2+1+b-a,a>0,所以g(x)在区间[2,3]上是增函数,故 ,由此解得
a、b的值.
(2)不等式可化为 2x+-2≥k•2x,故有 k≤t2-2t+1,t∈[,2],求出h(t)=t2-2t+1的最小值,从而求得k
的取值范围.
点评:本题主要考查求二次函数在闭区间上的最值,函数的零点与方程根的关系,函数的恒成立问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=x3-3ax2-3t2+t(t>0)
(1)求函数g(x)的单调区间;
(2)曲线y=g(x)在点M(a,g(a))和N(b,g(b))(a<b)处的切线都与y轴垂直,若方程g(x)=0在区间[a,b]上有解,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=lnx,0<r<s<t<1则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a+lnx
x
,且f(x)+g(x)=
(x+1)lnx
x

(1)若函数f(x)在区间[1,+∞)上为减函数,求实数a的取值范围;
(2)若函数g(x)在[1,e]上的最小值为
3
2
,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博一模)已知函数g(x)=(2-a)lnx,h(x)=lnx+ax2(a∈R),令f(x)=g(x)+h′(x).
(Ⅰ)当a=0时,求f(x)的极值;
(Ⅱ)当a<-2时,求f(x)的单调区间;
(Ⅲ)当-3<a<-2时,若对?λ1,λ2∈[1,3],使得|f(λ1)-f(λ2)|<(m+ln3)a-2ln3恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•济宁二模)已知函数g(x)=
x
lnx
,f(x)=g(x)-ax(a>0).
(I)求函数g(x)的单调区间;
(Ⅱ)若函数f(x)在(1,+∞)上是减函数,求实数a的最小值;
(Ⅲ)当a≥
1
4
时,若?x1,x2∈[e,e2]使f(x1)≤f′(x2)+a成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案