精英家教网 > 高中数学 > 题目详情
函数f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期为π,若其图象向右平移
π
3
个单位后关于y轴对称,则y=f(x)对应的解析式为 (  )
A、y=sin(2x-
π
6
B、y=cos(2x+
π
6
C、y=cos(2x-
π
3
D、y=sin(2x+
6
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:三角函数的图像与性质
分析:由周期求得ω,根据诱导公式以及y=Asin(ωx+φ)的图象变换规律,可得y=f(x)的解析式.
解答: 解:由题意可得
ω
=π,∴ω=2.
把函数f(x)=sin(2x+φ)图象向右平移
π
3
个单位后,
所得图象对应的函数解析式为y=sin[2(x-
π
3
)+φ]=sin(2x+φ-
3
),
由于所得函数的图象关于y轴对称,故y=sin(2x+φ-
3
)为偶函数,
∴φ-
3
=kπ+
π
2
,k∈z,即 φ=kπ+
6

再结合,|φ|<
π
2
,可得φ=
π
6
,∴f(x)=sin(2x+
π
6
)=cos(2x-
π
3
),
故选:C.
点评:本题主要考查诱导公式的应用,利用了y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆C的中心在原点,焦点在x轴上,离心率为
6
3
,并与直线y=x+2相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如图,过圆D:x2+y2=4上任意一点P作椭圆C的两条切线m,n. 求证:m⊥n.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f是从数集a到b的一一映射,若a中有三个元素,则b的非空真子集的个数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1、F2分别是双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)的左右焦点,其右支上一点P,满足|PF1|=3,实轴长为1,M是y轴上一点,则
PM
•(
PF1
-
PF2
)
=(  )
A、
1
2
B、
3
2
C、
5
2
D、
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数x,y满足不等式组
x+3y-3≥0
2x-y-3≤0
x-my+1≥0
,若目标函数z=2x+y的最大值为9,则实数m=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1,C2的极坐标方程分别为ρ=4cos(θ+
π
6
)和ρcos(θ+
π
6
)=5.
(1)将C1,C2的方程化为直角坐标方程;
(2)设点P在曲线C1上,点Q在C2上,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是学校从走读生中随机调查200名走读生早上上学所需时间(单位:分钟)样本的频率分布直方图.
(1)学校所有走读生早上上学所需要的平均时间约是多少分钟?
(2)根据调查,距离学校500米以内的走读生上学时间不超过10分钟,距离学校1000米以内的走读生上学时间不超过20分钟.那么,距离学校500米以内的走读生和距离学校1000米以上的走读生所占全校走读生的百分率各是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:lg2+lne-lg102+49log73.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)-3f(2-x)=2x+1,求f(x)的表达式.

查看答案和解析>>

同步练习册答案