精英家教网 > 高中数学 > 题目详情
给出下列结论:
①命题“?x∈R,sinx≤1”的否定是“?p:?x∈R,sinx>1”;
②命题“所有正方形都是平行四边形”的否定是“所有正方形都不是平行四边形”;
③命题“A1,A2是互斥事件”是命题“A1,A2是对立事件”的必要不充分条件;
④若a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的充分不必要条件.
其中正确结论的是______.
对于①,命题“?x∈R,sinx≤1”是全程命题,其否定为特称命题“?p:?x∈R,sinx>1”,
所以命题①正确;
对于②,命题“所有正方形都是平行四边形”的否定是“存在正方形不是平行四边形”,所以命题②不正确;
对于③,由“A1,A2是互斥事件”不一定有“A1,A2是对立事件”,反之,由“A1,A2是对立事件”一定有“A1,A2是互斥事件”,所以命题“A1,A2是互斥事件”是命题“A1,A2是对立事件”的必要不充分条件,所以命题③正确;
对于④,若a,b是实数,则由“a>0且b>0”能得到“a+b>0且ab>0”,反之也成立,所以,若a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的充分必要条件,所以命题④不正确.
故答案为①③.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:?x∈R,使sinx=
5
2
;命题q:?x∈R,都有x2+x+1>0.给出下列结论:
①命题“p∧q”是真命题;
②命题“p∧¬q”是假命题;
③命题“¬p∨q”是真命题;
④命题“¬p∨¬q”是假命题.
其中正确的是(  )
A、②③B、②④C、③④D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:?x∈R,使sin x=
5
2
;命题q:?x∈R,都有x2+x+1>0.给出下列结论:①命题“p∧q”是真命题;②命题“p∧非q”是假命题;③命题“非p∨q”是真命题;④命题“非p∨非q”是假命题、其中正确的是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

5、已知命题p:?x0∈R,使log2x0>0命题q:?x∈R,都有x2+x+1>0.给出下列结论:
①命题“p∧q”是真命题②命题“p∧¬q”是假命题
③命题“¬p∪q”是真命题;④命题“¬p∪¬q”是假命题
其中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列结论:
①命题p:a>
2
3
时,函数y=(3a-1)x在(-∞,+∞)上是增函数;命题q:n∈N*,时,函数y=xn在(-∞,+∞)上是增函数,则命题p∧q是真命题;
②命题“若lgx>lgy,则x>y”的逆命题是真命题;
③已知直线l1:ax+3y-1=0,l2:x+by+1=0,“若l1⊥l2,则
a
b
=-3”是假命题;
④设α、β是两个不同的平面,a、b是两条不同的直线.“若a∥α,b∥β,a∥b,则α∥β”是假命题.
其中正确结论的序号是
 
.(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:在锐角三角形ABC中,?A,B,使sinA<cosB;命题q:?x∈R,都有x2+x+1>0,给出下列结论:
①命题“p∧q”是真命题;           
②命题“¬p∨q”是真命题;
③命题“¬p∨¬q”是假命题;       
④命题“p∧¬q”是假命题;
其中正确结论的序号是(  )

查看答案和解析>>

同步练习册答案