精英家教网 > 高中数学 > 题目详情
已知|
a
|=1
|
b
|=
2

(1)若向量
a
b
的夹角为
4
,求(
a
+
b
)•(
a
+
b
)
的值;
(2)若 
a
-
b
a
垂直,求
a
b
的夹角.
分析:(1)由数量积的定义,结合题意代入可得答案;
(2)设向量
a
b
的夹角为θ,由垂直可得数量积为0,代入式子可得夹角的余弦值,进而可得答案.
解答:解:(1)由题意可得:(
a
+
b
)•(
a
+
b
)

=|
a
|2+|
b
|2+2|
a
||
b
|cos <
a
b

=1+2+2×
2
×(-
2
2
)=1
(2)设向量
a
b
的夹角为θ,
由 
a
-
b
a
垂直可得(
a
-
b
)•
a
=0,
|
a
|2-|
a
||
b
|cosθ
=0,即1-
2
cosθ
=0,
解得cosθ=
2
2
,因为θ∈[0,π],
a
b
的夹角θ=
π
4
点评:本题考查向量的数量积和夹角公式,正确进行数量积的运算时解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知|
a
|=1
|
b
|=
2
a
⊥(
a
-
b
)
,则向量
a
与向量
b
的夹角是(  )
A、30°B、45°
C、90°D、135°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a|
=1
|
b
|=2
a
⊥(
a
+
b
)
,则
a
b
夹角的度数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=
3
,且
a
b
的夹角为
π
6
,则|
a
-
b
|的值为
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=2
,向量
a
b
的夹角为
3
c
=
a
+2
b
,则
c
的模等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=1,b=2.
(1)若sin
A
2
=
1
4
,求sinB的值;
(2)若cosC=
1
4
,求△ABC的周长.

查看答案和解析>>

同步练习册答案