【题目】“互联网+”是“智慧城市”的重要内容,A市在智慧城市的建设中,为方便市民使用互联网,在主城区覆盖了免费WiFi为了解免费WiFi在A市的使用情况,调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到如下列联表(单位:人):
经常使用免费WiFi | 偶尔或不用免费WiFi | 合计 | |
45岁及以下 | 70 | 30 | 100 |
45岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,判断是否有90%的把握认为A市使用免费WiFi的情况与年龄有关;
(2)将频率视为概率,现从该市45岁以上的市民中用随机抽样的方法每次抽取1人,共抽取3次.记被抽取的3人中“偶尔或不用免费WiFi”的人数为X,若每次抽取的结果是相互独立的,求X的分布列,数学期望E(X)和方差D(X).附:,其中.
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)作出函数的图像;
(2)根据(1)所得图像,填写下面的表格:
性质 | 定义域 | 值域 | 单调性 | 奇偶性 | 零点 |
(3)关于的方程恰有6个不同的实数解,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆的左、右焦点分别为,左项点为上顶点为.已知.
(1)求椭圆的离心率;
(2)设为椭圆上在第一象限内一点,射线与椭圆的另一个公共点为,满足,直线交轴于点,的面积为.
(i)求椭圆的方程.
(ii)过点作不与轴垂直的直线交椭圆于(异于点)两点,试判断的大小是否为定值,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数,关于的方程,给出下列结论
①存在这样的实数,使得方程有3个不同的实根
②不存在这样的实数,是的方程有4个不同的实根
③存在这样的实数,是的方程有5个不同的实根
④不存在这样的实数,是的方程有6个不同的实根
其中正确的个数是( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中.
(1)若曲线在点处的切线与直线平行,求与满足的关系;
(2)当时,讨论的单调性;
(3)当时,对任意的,总有成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,是椭圆:上的点,过点的直线的方程为.
(1)求椭圆的离心率;
(2)当时,
(i)设直线与轴、轴分别相交于,两点,求的最小值;
(ii)设椭圆的左、右焦点分别为,,点与点关于直线对称,求证:点,,三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】车间将10名技工平均分成甲乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为10.
(1)分别求出,的值;
(2)质检部门从该车间甲乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率;
(3)根据以上茎叶图和你所学的统计知识,分析两组技工的整体加工水平及稳定性.
(注:方差,其中为数据,,…,的平均数).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(卷号)2040818101747712
(题号)2050752239689728
(题文)
在平面直角坐标系中,以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系.已知直线的参数方程为(为参数),曲线C的极坐标方程为.
(1)求曲线的直角坐标方程和直线的普通方程;
(2)设直线与曲线交于两点,点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com