【题目】如图,平面平面,,四边形为平行四边形,,为线段的中点,点满足.
(Ⅰ)求证:直线平面;
(Ⅱ)求证:平面平面;
(Ⅲ)若平面平面,求直线与平面所成角的正弦值.
【答案】(1)见证明;(2)见证明; (3)
【解析】
(Ⅰ)连接,交于点,利用平几知识得线线平行,再根据线面平行判定定理得结论,(Ⅱ)建立空间直角坐标系,利用向量垂直进行论证线线垂直,再根据线面垂直判定定理以及面面垂直垂直判定定理得结果,(Ⅲ)建立空间直角坐标系,根据面面垂直得两平面法向量垂直,进而得P点坐标,最后利用空间向量数量积求线面角.
(Ⅰ)证明:连接,交于点,连接
在平行四边形中,因为,所以,
又因为,即,
所以,
又因为平面,平面,所以直线平面.
(Ⅱ)证明:因为,为线段的中点,所以,
又因为平面平面于,平面所以平面
在平行四边形中,因为,所以
以为原点,分别以所在直线为轴,轴,建立空间直角坐标系,
则
因为平面所以设,
则
所以
所以,又因为
所以平面,又因为平面
所以平面平面.
(Ⅲ)解:因为
设为平面的一个法向量
则不妨设
因为
设为平面的一个法向量
则不妨设
因为平面平面,所以,所以
因为
所以
所以,
所以
所以直线与平面所成角的正弦值为.
科目:高中数学 来源: 题型:
【题目】如图所示,多面体ABCDEF中,已知平面ABCD是边长为3的正方形,,,EF到平面ABCD的距离为2,则该多面体的体积V为( )
A.B.5C.6D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是且各阶段通过与否相互独立.
(1)求该选手在复赛阶段被淘汰的概率;
(2)设该选手在竞赛中回答问题的个数为ξ,求ξ的分布列与均值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将个编号为、、、的不同小球全部放入个编号为、、、的个不同盒子中.求:
(1)每个盒至少一个球,有多少种不同的放法?
(2)恰好有一个空盒,有多少种不同的放法?
(3)每盒放一个球,并且恰好有一个球的编号与盒子的编号相同,有多少种不同的放法?
(4)把已知中个不同的小球换成四个完全相同的小球(无编号),其余条件不变,恰有一个空盒,有多少种不同的放法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥的底面是菱形,底面,分别是的中点,,,.
(I)证明:;
(II)求直线与平面所成角的正弦值;
(III)在边上是否存在点,使与所成角的余弦值为,若存在,确定点位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有下列四个命题:
①若p是q的充分不必要条件,则¬p是¬q的必要不充分条件;
②若命题p:x≥0,x2+1>0,则¬p:x0<0,x02+1≤0;
③在△ABC中,A>B是sinA>sinB的充要条件;
④命题:当1<t<4时方程1表示焦点在x轴上的椭圆,为真命题.
其中真命题的序号是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com