精英家教网 > 高中数学 > 题目详情
10.集合A={x|x<3},B={x|x2-5x<0},则A∩B是(  )
A.{x|0<x<3}B.{x|0<x<5}C.{x|3<x<5}D.{x|x<0}

分析 先分别求出集合A和B,由此能求出A∩B.

解答 解:∵集合A={x|x<3},B={x|x2-5x<0}={x|0<x<5},
∴A∩B={x|0<x<3}.
故选:A.

点评 本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在三角形ABC中,三个内角A,B,C所对的边分别为a,b,c,若acosA=bcosB,则三角形ABC一定是(  )三角形.
A.直角B.等边C.钝角D.等腰或直角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求值:log23•log34+(log224-log26+6)${\;}^{\frac{2}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在边长为4的菱形ABCD中,∠BAD=60°,DE⊥AB于点E,将△ADE沿DE折起到△A1DE的位置,使A1E⊥EB.

(1)求证:A1D⊥DC;
(2)求二面角E-A1B-C的余弦值;
(3)判断在线段EB上是否存在一点P,使平面A1DP⊥平面A1BC?若存在,求出$\frac{EP}{EB}$的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=x+$\frac{4}{x}$,g(x)=2x+a,若?x1∈[$\frac{1}{2}$,3],?x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围a≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数F(x)=f(x-1)+x2是定义在R上的奇函数,若F(-1)=2,则f(0)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知点G是△ABC的重心,A(0,-1),B(0,1).在x轴上有一点M,满足|$\overrightarrow{MA}$|=|$\overrightarrow{MC}$|,$\overrightarrow{GM}$=λ$\overrightarrow{AB}$(λ∈R)(若△ABC的顶点坐标为A(x1,y1),B(x2,y2),C(x3,y3),则该三角形的重心坐标为G($\frac{{{x_1}+{x_2}+{x_3}}}{3}$,$\frac{{{y_1}+{y_2}+{y_3}}}{3}$).
(1)求点C的轨迹E的方程;
(2)若斜率为k的直线l与(1)中的曲线E交于不同的两点P、Q,且|$\overrightarrow{AP}$|=|$\overrightarrow{AQ}$|,试求斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=lnx,g(x)=lnx-x+2.
(1)求函数g(x)的极大值;
(2)若关于x的不等式$mf(x)≥\frac{x-1}{x+1}$在[1,+∞)上恒成立,求实数m的取值范围;
(3)已知$α∈(0,\frac{π}{2})$,试比较f(tanα)与-cos2α的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=$\sqrt{x+1}+\frac{1}{x+1}$的定义域为(-1,+∞).

查看答案和解析>>

同步练习册答案