精英家教网 > 高中数学 > 题目详情
16.已知y=e${\;}^{arctan\sqrt{2x}}$,则y′=e${\;}^{arctan\sqrt{2x}}$×$\frac{\sqrt{2x}}{2x(1+2x)}$.

分析 令u=arctan$\sqrt{2x}$,可得u′=$\frac{\sqrt{2x}}{2x(1+2x)}$.于是y′=(eu)′•u′.

解答 解:令u=arctan$\sqrt{2x}$,u′=$\frac{1}{1+2x}$×$\frac{2}{2\sqrt{2x}}$=$\frac{\sqrt{2x}}{2x(1+2x)}$.
∴y′=(eu)′•u′=e${\;}^{arctan\sqrt{2x}}$×$\frac{\sqrt{2x}}{2x(1+2x)}$.
故答案为:e${\;}^{arctan\sqrt{2x}}$×$\frac{\sqrt{2x}}{2x(1+2x)}$.

点评 本题考查了换元方法、复合函数的导数运算法则,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系中,点P为椭圆$\frac{{x}^{2}}{3}$+y2=1上的一个动点,则点P到直线x-y+6=0的最大距离为4$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.命题“?x0∈R,x${\;}_{0}^{2}$-2x0+1<0“的否定是?x∈R,x2-2x+1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).以点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$.
(Ⅰ)将曲线C和直线l化为直角坐标方程;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.小明同学早晨从家到学校上学,他需要乘坐520路公交车,已知小明到达车站的时间是随机的,该路公交车每15分钟来一趟,则小明在公交车站上等车时间少于10分钟的概率为(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出下列命题:①若命题p:$\frac{1}{{x}^{2}-2x-8}$>0,则¬p:$\frac{1}{{x}^{2}-2x-8}$≤0;
②“?x∈R,x3-x2+1≤0“的否定是“?x∈R,x3-x2+1>0”;
③命题p:x≠2或y≠3,命题q:x+y≠5,则p是q的必要不充分条件;
④“在三角形ABC中,若sinA>sinB,则A>B”的逆命题是真命题.
正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数y=Asin(ωx+ϕ)其中$A>0,ω>0,|ϕ|<\frac{π}{2}$,若函数的最小正周期为π,最大值为2,且过(0,1)点,
(1)求函数的解析式;
(2)求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若全集为实数集R,f(x)、g(x)均为x的二次函数,P={x|f(x)<0},Q={x|g(x)≤0},则不等式组$\left\{\begin{array}{l}f(x)<0\\ g(x)>0\end{array}\right.$的解集可用P、Q表示为P∩CIQ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=x2-2,则不等式f(x)<x的解集为(1,+∞)∪(-1,0).

查看答案和解析>>

同步练习册答案