精英家教网 > 高中数学 > 题目详情
16.已知两圆C1:(x+5)2+y2=4,C2:(x-5)2+y2=4,动圆C与圆C1外切,而与圆C2内切,求动圆圆心C的轨迹方程.

分析 设动圆圆心M(x,y),半径为r,则|MC1|=r+2,|MC2|=r-2,可得|MC1|-|MC2|=r+2-r+2=4<|C1C2|=10,利用双曲线的定义,即可求动圆圆心M的轨迹方程.

解答 解:设动圆圆心M的坐标为(x,y),半径为r,则|MC1|=r+2,|MC2|=r-2,
∴|MC1|-|MC2|=r+2-r+2=4<|C1C2|=10,
由双曲线的定义知,点M的轨迹是以C1、C2为焦点的双曲线的右支,且2a=4,a=2,b=$\sqrt{21}$,
双曲线的方程为:$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{21}=1$(x>0).

点评 本题考查圆与圆的位置关系,考查双曲线的定义,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函教y=log3(x-2)+3的图象是由函数y=1og3x的图象先向右平移2个单位、再向上平移3个单位得到.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)满足f(x+1)=$\frac{1}{2}$f(x),且当0≤x≤1时,f(x)=2x,则f(log215)=$\frac{15}{256}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知正数a,b满足2a2+b2=3,求a$\sqrt{{b}^{2}+1}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C与椭圆x2+37y2=37的焦点F1,F2相同,且椭圆C过点($\frac{5\sqrt{7}}{2}$,-6).
(1)求椭圆C的标准方程;
(2)若点P在椭圆C上,且∠F1PF2=$\frac{π}{3}$,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知x>1,且x≠$\frac{4}{3}$,f(x)=1+logx3,g(x)=2logx2,试比较f(x)与g(x)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在角的集合{α|α=k•90°+45°,k∈Z}中:
(1)有几种终边不相同的角?
(2)写出属于区间(-180°,180°)内的角;
(3)写出题中是第二象限角的一般表示法.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在锐角三角形ABC中,AD是BC边上的高,DE⊥AB,DF⊥AC,E,F是垂足,求证:E,B,C,F四点共圆.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示,在四棱锥P-ABCD中,底面ABCD为正方形,侧棱PA⊥底面ABCD,PA=AD=1,E、F分别为PD、AC上的动点,且$\frac{DE}{DP}$=$\frac{CF}{CA}$=λ(0<λ<1).
(Ⅰ)当λ=$\frac{1}{2}$时,求证:AD⊥EF;
(Ⅱ)求三棱锥E-FAD的体积的最大值.

查看答案和解析>>

同步练习册答案