精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的左焦点左顶点.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知是椭圆上的两点是椭圆上位于直线两侧的动点.若,试问直线的斜率是否为定值?请说明理由.

【答案】(Ⅰ).(Ⅱ).

【解析】分析:(Ⅰ)根据条件依次求得,从而可得方程;

(Ⅱ)当∠APQ=BPQ,则PA、PB的斜率之和为0,设直线PA的斜率为k,则PB的斜率为-k,PA的直线方程为y-3=k(x-2),PB的直线方程为y-9=-k(x-2),由此利用韦达定理结合已知条件能求出AB的斜率为定值.

详解:(Ⅰ)由题意可得,,得

所以椭圆的方程为.

(Ⅱ)当时,的斜率之和为,设直线的斜率为,则直线的斜率为,设 的方程为.

联立

.

所以

同理

所以.

所以.

所以的斜率为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为梯形,AD∥BC,BC=6,PA=AD=CD=2,E为BC上一点且BE= BC,PB⊥AE.

(1)求证:AB⊥PE;
(2)求二面角B﹣PC﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)解不等式

(2)若函数在区间上存在零点,求实数的取值范围;

3)若函数其中为奇函数, 为偶函数,若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市某机构为了调查该市市民对我国申办2034年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:

不支持

支持

合计

男性市民

女性市民

合计

(1)根据已知数据把表格数据填写完整;

(2)利用(1)完成的表格数据回答下列问题:

(i)能否有的把握认为支持申办足球世界杯与性别有关;

(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退体老人中随机抽取人,求至多有位老师的概率.

参考公式:,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x|+|x﹣1|.
(Ⅰ)若f(x)≥|m﹣1|恒成立,求实数m的最大值M;
(Ⅱ)在(Ⅰ)成立的条件下,正实数a,b满足a2+b2=M,证明:a+b≥2ab.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)过点M(m,2),其焦点为F,且|MF|=2.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设E为y轴上异于原点的任意一点,过点E作不经过原点的两条直线分别与抛物线C和圆F:(x﹣1)2+y2=1相切,切点分别为A,B,求证:直线AB过定点F(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,过点P分别做圆O的切线PA、PB和割线PCD,弦BE交CD于F,满足P、B、F、A四点共圆.
(Ⅰ)证明:AE∥CD;
(Ⅱ)若圆O的半径为5,且PC=CF=FD=3,求四边形PBFA的外接圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点.

(Ⅰ)求证:PC∥平面EBD;

(Ⅱ)求证:平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C: =1(α>b>0)经过点( ),且原点、焦点,短轴的端点构成等腰直角三角形.
(1)求椭圆E的方程;
(2)是否存在圆心在原点的圆,使得该圆的任意一条切线(切线斜率存在)与椭圆C恒有两个交点A,B.且 ?若存在,求出该圆的方程,若不存在说明理由.

查看答案和解析>>

同步练习册答案