精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax+
b
x
(其中a、b为常数)的图象经过(1,2)、(2,
5
2
)
两点.
(1)判断并证明函数f(x)的奇偶性;
(2)证明:函数f(x)在区间[1,+∞)上单调递增.
考点:函数奇偶性的判断,函数单调性的判断与证明
专题:函数的性质及应用
分析:(1)根据函数奇偶性的定义判断并证明函数f(x)的奇偶性;
(2)根据函数单调性的定义证明即可.
解答: 解:由已知有
a+b=2
2a+
b
2
=
5
2
,解得
a=1
b=1

f(x)=x+
1
x
.  …(3分)
(1)f(x)是奇函数.…(4分)
证明:由题意f(x)的定义域为(-∞,0)∪(0,+∞),关于原点对称,…(5分)
f(-x)=-x-
1
x
=-(x+
1
x
)=-f(x)
,…(6分)
∴f(x)是奇函数.           …(7分)
(2)证明:任取x1,x2∈[1,+∞),且x1<x2,…(8分),
f(x1)-f(x2)=(x1+
1
x1
)-(x2+
1
x2
)=(x1-x2)+(
1
x1
-
1
x2
)=(x1-x2)(
x1x2-1
x1x2
)
,…(10分)
∵x1-x2<0,x1x2-1>0,x1x2>0,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),…(11分)
故函数f(x)在区间[1,+∞)上单调递增.…(12分)
点评:本题主要考查函数奇偶性和单调性的判断,利用定义法是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
x2
2x-1
的图象大致是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

若10a=5,10b=2,则a+b=(  )
A、-1B、0C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线kx+y+k+2=0恒经过一个定点,则过这一定点和原点的直线方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
ex+1
+a
(Ⅰ)当a为何值时,f(x)为奇函数;
(Ⅱ)判断函数f(x)的单调性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个内角A、B、C所对的边分别为a,b,c,asinAsinB+bcos2A=
2
a,则
b
a
=(  )
A、2
3
B、2
2
C、
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cos2x+sinxcosx(x∈R)
(1)求f(
8
)的值;
(2)若f(
x0
2
)=
3
4
,x0∈(
π
4
π
2
),求sinx0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x-cosx,{an}是公差为
π
8
的等差数列,f(a1)+f(a2)+…+f(a5)=5π,则[f(a3)]2-a1a5=(  )
A、0
B、
1
16
π2
C、
1
8
π2
D、
13
16
π2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:若各项为正实数的数列{an}满足an+1=
an
(n∈N*)
,则称数列{an}为“算术平方根递推数列”.已知数列{xn}满足xn>0,n∈N*,且x1=
9
2
,点(xn+1,xn)在二次函数f(x)=2x2+2x的图象上.
(1)试判断数列{2xn+1}(n∈N*)是否为算术平方根递推数列?若是,请说明你的理由;
(2)记yn=lg(2xn+1)(n∈N*),求证:数列{yn}是等比数列,并求出通项公式yn
(3)从数列{yn}中依据某种顺序自左至右取出其中的项yn1,yn2,yn3,…,把这些项重新组成一个新数列{zn}:z1=yn1,z2=yn2,z3=yn3,….
(理科)若数列{zn}是首项为z1=(
1
2
)m-1
、公比为q=
1
2k
(m,k∈N*)
的无穷等比数列,且数列{zn}各项的和为
16
63
,求正整数k、m的值.
(文科) 若数列{zn}是首项为z1=(
1
2
)m-1
,公比为q=
1
2k
(m,k∈N*)
的无穷等比数列,且数列{zn}各项的和为
1
3
,求正整数k、m的值.

查看答案和解析>>

同步练习册答案