(本小题满分12分)
甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在8,9,10环,且每次射击击中与否互不影响.甲、乙射击命中环数的概率如表:
|
8环 |
9环 |
10环 |
甲 |
0.2 |
0.45 |
0.35 |
乙 |
0.25 |
0.4 |
0.35 |
(Ⅰ)若甲、乙两运动员各射击1次,求甲运动员击中8环且乙运动员击中9环的概率;
(Ⅱ)若甲、乙两运动员各自射击2次,求这4次射击中恰有3次击中9环以上(含9环)的概率.
(1) 0.08.
(2) 甲、乙两运动员各自射击两次,这4次射击中恰有3次击中9环以上的概率为
【解析】
试题分析:解:(Ⅰ)由已知甲射击击中8环的概率为0.2,乙射击击中9环的概率为0.4,则所求事件的概率为 P=0.2×0.4=0.08. 3分
(Ⅱ)记“甲运动员射击一次,击中9环以上(含9环)”为事件A,“乙运动员射击1次,击中9环以上(含9环)”为事件B,则
P(A)=0.35+0.45=0.8,P(B)=0.35+0.4=0.75. 5分
“甲、乙两运动员各自射击两次,这4次射击中恰有3次击中9环以上(含9环)”包含甲击中2次、乙击中1次,与甲击中1次、乙击中2次两个事件,这两个事件为互斥事件.
甲击中2次、乙击中1次的概率为
; 8分
甲击中1次、乙击中2次的概率为
. 11分
故所求概率为 . 12分
答:甲、乙两运动员各自射击两次,这4次射击中恰有3次击中9环以上的概率为.
考点:概率的求解和运用
点评:解决的关键是对于概率的加法公式和乘法公式的准确运用,属于基础题。
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com