分析 由题意,线段PQ中点M的轨迹与已知直线平行,且距离相等,可得方程;若点M的坐标(x,y)又满足不等式$\left\{\begin{array}{l}y≤\frac{x}{3}+2\\ y≤-x+2\end{array}\right.$,则$\sqrt{{x^2}+{y^2}}$的最小值是(0,0)到直线x+2y+1=0的距离.
解答 解:由题意,线段PQ中点M的轨迹与已知直线平行,且距离相等,方程是x+2y+1=0;
若点M的坐标(x,y)又满足不等式$\left\{\begin{array}{l}y≤\frac{x}{3}+2\\ y≤-x+2\end{array}\right.$,
则$\sqrt{{x^2}+{y^2}}$的最小值是(0,0)到直线x+2y+1=0的距离,即$\frac{1}{\sqrt{1+4}}$=$\frac{\sqrt{5}}{5}$,
故答案为:x+2y+1=0;$\frac{\sqrt{5}}{5}$.
点评 本题考查直线方程,考查点到直线的距离公式的运用,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 8 | B. | 4 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{3+2\sqrt{2}}}{2}$ | B. | 3 | C. | $\frac{3}{2}$ | D. | $3+2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com