精英家教网 > 高中数学 > 题目详情
(2012•江西模拟)已知椭圆的两个焦点F1(-
3
,0)
F2(
3
,0)
,过F1且与坐标轴不平行的直线l1与椭圆相交于M,N两点,△MNF2的周长等于8.若过点(1,0)的直线l与椭圆交于不同两点P、Q,x轴上存在定点E(m,0),使
PE
QE
恒为定值,则E的坐标为(  )
分析:先确定椭圆的方程,再取两个特殊位置,求出
PE
QE
,利用x轴上存在定点E(m,0),使
PE
QE
恒为定值,即可求得E的坐标.
解答:解:由题意,设椭圆的方程为
x2
a2
+
y2
b2
=1
(a>b>0),则c=
3
,4a=8
∴a=2,b=
a2-c2
=1
∴椭圆的方程为
x2
4
+y2=1

取直线l⊥x轴,则可得P(1,
3
2
),Q(1,-
3
2
),所以
PE
QE
=(m-1,-
3
2
)(m-1,
3
2
)=(m-1)2-
3
4

取直线l为x轴,则可得P(-2,0),Q(2,0),所以
PE
QE
=(m+2,0)•(m-2,0)=m2-4
由题意可得,(m-1)2-
3
4
=m2-4,∴m=
17
8

∴E的坐标为(
17
8
,0)

故选C.
点评:本题考查椭圆的标准方程,考查向量知识的运用,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西模拟)球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,面SAB⊥面ABC,则棱锥S-ABC的体积的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)在△ABC中,P是BC边中点,角A、B、C的对边分别是a、b、c,若c
AC
+a
PA
+b
PB
=
0
,则△ABC的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知数列{an}是各项均不为0的等差数列,公差为d,Sn 为其前n项和,且满足an2=S2n-1,n∈N*.数列{bn}满足bn=
1anan+1
,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式和Tn
(2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn,成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,将函数f(x)向左平移
π
6
个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若c=
7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
m
=(cosA,cosB)
n
=(1,sinA-cosAtanB)
,求
m
n
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐进线的交点分别为B、C.若
AB
=
1
2
BC
,则双曲线的离心率是
5
5

查看答案和解析>>

同步练习册答案