精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线C,则( )

A.双曲线C的离心率等于半焦距的长

B.双曲线与双曲线C有相同的渐近线

C.双曲线C的一条准线被圆x2y21截得的弦长为

D.直线ykxb(kbR)与双曲线C的公共点个数只可能为012

【答案】ACD

【解析】

根据双曲线的几何性质,直线和双曲线的位置关系,直线和圆的位置关系等知识对选项逐一分析,由此确定正确选项.

双曲线焦点在轴上,且,渐近线为,准线方程为.

对于A选项,双曲线的离心率为,所以A选项正确.

对于B选项,双曲线的渐近线为,与曲线的渐近线不相同,故B选项错误.

对于C选项,双曲线的一条准线方程为代入,解得,所以弦长为,所以C选项正确.

对于D选项,直线与双曲线的公共点个数可能为,故D选项正确.

故选:ACD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数在点处切线斜率为0,求的值;

(2)求函数 的单调递增区间;

(3)若处取得极大值,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出:坚决打赢脱贫攻坚战,做到精准扶贫,我省某帮扶单位为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助贫困村种植脐橙,并利用互联网电商进行销售,为了更好销售,现从该村的脐橙树上随机摘下100个脐橙进行测重,其质量分布在区间(单位:克),统计质量的数据作出其频率分布直方图如图所示:

(1)按分层抽样的方法从质量落在的脐橙中随机抽取5个,再从这5个脐橙中随机抽2个,求这2个脐橙质量至少有一个不小于400克的概率;

(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的脐橙种植地上大约还有100000个脐橙待出售,某电商提出两种收购方案:

A.所有脐橙均以7元/千克收购;

B.低于350克的脐橙以2元/个收购,其余的以3元/个收购

请你通过计算为该村选择收益较好的方案.

(参考数据:(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)当时,求函数在点处的切线方程;

(2)若函数的图象与轴交于两点,且,求的取值范围;

(3)在(2)的条件下,证明:为函数的导函数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正实数,函数 .

(1)讨论函数的单调性;

(2)若内有解,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列的公差d大于0,前n项的和为.已知18成等比数列.

1)求的通项公式;

2)若对任意的,都有k(18)≥恒成立,求实数k的取值范围;

3)设().若stst1,且,求st的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两地相距,现计划在两地间以为端点的线段上,选择一点处建造畜牧养殖场,其对两地的影响度与所选地点到两地的距离有关,对地和地的总影响度为对地和地的影响度之和,记点地的距离为,建在处的畜牧养殖场对地和地的总影响度为.统计调查表明:畜牧养殖场对地的影响度与所选地点到地的距离成反比,比例系数为;对地的影响度与所选地点到地的距离成反比,比例系数为,当畜牧养殖场建在线段中点处时,对地和地的总影响度为.

1)将表示为的函数,写出函数的定义域;

2)当点到地的距离为多少时,建在此处的畜牧养殖场对地和地的总影响度最小?并求出总影响度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国南宋数学家杨辉在所著的《详解九章算法》一书中用如图所示的三角形解释二项展开式的系数规律,去掉所有为1的项,依次构成2334645101056…,则此数列的前50项和为(

A.2025B.3052C.3053D.3049

查看答案和解析>>

同步练习册答案