【题目】某单位名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(I)现要从年龄低于40岁的员工中用分层抽样的方法抽取12人,则年龄在第组的员工人数分别是多少?
(II)为了交流读书心得,现从上述人中再随机抽取人发言,设人中年龄在的人数为,求的数学期望;
(III)为了估计该单位员工的阅读倾向,现对从该单位所有员工中按性别比例抽取的40人做“是否喜欢阅读国学类书籍”进行调查,调查结果如下表所示:(单位:人)
喜欢阅读国学类 | 不喜欢阅读国学类 | 合计 | |
男 | 14 | 4 | 18 |
女 | 8 | 14 | 22 |
合计 | 22 | 18 | 40 |
根据表中数据,我们能否有的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系?
附:,其中
0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
科目:高中数学 来源: 题型:
【题目】某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.
(1)下表是年龄的频数分布表,求正整数a,b的值;
区间 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50] |
人数 | 50 | 50 | a | 150 | b |
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,直线AB的方程为3x﹣2y﹣1=0,直线AC的方程为2x+3y﹣18=0.直线BC的方程为3x+4y﹣m=0(m≠25).
(1)求证:△ABC为直角三角形;
(2)当△ABC的BC边上的高为1时,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,A、B、C三点满足 = + .
(1)求证:A、B、C三点共线;
(2)求 的值;
(3)已知A(1,cosx)、B(1+cosx,cosx),x∈[0, ],f(x)= ﹣(2m+ )| |的最小值为﹣ ,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,已知内角A,B,C所对的边分别为a,b,c,向量m=(2sin B,- ),n=,且m∥n.
(1)求锐角B的大小;
(2)如果b=2,求△ABC的面积S△ABC的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某产品的广告费用x与销售额y的统计数据如表:
广告费用x(万元) | 4 | 2 | 3 | 5 |
销售额y(万元) | 49 | 26 | 39 | 54 |
根据上表可得回归方程 = x+ 中的 为9.4,据此模型预报广告费用为6万元时销售额为( )
A.63.6万元
B.67.7万元
C.65.5万元
D.72.0万元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设点到坐标原点的距离和它到直线的距离之比是一个常数.
(1)求点的轨迹;
(2)若时得到的曲线是,将曲线向左平移一个单位长度后得到曲线,过点的直线与曲线交于不同的两点,过的直线分别交曲线于点,设, , ,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com