精英家教网 > 高中数学 > 题目详情

【题目】一束光线发出,射到轴上,被轴反射到圆上.(1)求反射线通过圆心时,光线的方程;(2)求在轴上,反射点的范围.

【答案】1(2).

【解析】

(1)由题意,利用物理的光学知识可知入射光线上的任意一点关于轴对称的点必在其反射线上,由于反射线过圆心,有光线的可逆性知,反射线上的任意点圆心关于轴对称的点也必在入射光线上,然后由入射光线上已知两点写出所求的直线方程;(2)由题意和(1)可知反射线必过定点(次点是点A关于x轴对称的点),利用几何知识知当反射线与已知圆相切时恰好为范围的临界状态.

C(x2)2(y2)21

(1)C关于x轴的对称点C′(2,-2),过AC的方程:xy0为光线的方程.

(2)A关于x轴的对称点A′(3,-3),设过A的直线为y3k(x3),当该直线与⊙C相切时,

∴过A,⊙C的两条切线为y0,得

∴反射点Mx轴上的活动范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】4支足球队进行单循环比赛(任两支球队恰进行一场比赛),任两支球队之间胜率都是.单循环比赛结束,以获胜的场次数作为该队的成绩,成绩按从大到小排名次顺序,成绩相同则名次相同.下列结论中正确的是(

A.恰有四支球队并列第一名为不可能事件B.有可能出现恰有三支球队并列第一名

C.恰有两支球队并列第一名的概率为D.只有一支球队名列第一名的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2012年12月18日,作为全国首批开展空气质量新标准监测的74个城市之一,郑州市正式发布数据.资料表明近几年来郑州市雾霾治理取得了很大成效空气质量与前几年相比得到了很大改善.郑州市设有9个监测站点监测空气质量指数(),其中在轻度污染区、中度污染区、重度污染区分别设有2,5,2个监测站点,以9个站点测得的的平均值为依据播报我市的空气质量.

(Ⅰ)若某日播报的为118,已知轻度污染区的平均值为74,中度污染区的平均值为114,求重度污染区的平均值

(Ⅱ)如图是2018年11月的30天中的分布,11月份仅有一天.

组数

分组

天数

第一组

3

第二组

4

第三组

4

第四组

6

第五组

5

第六组

4

第七组

3

第八组

1

①郑州市某中学利用每周日的时间进行社会实践活动,以公布的为标准如果小于180,则去进行社会实践活动.以统计数据中的频率为概率,求该校周日进行社会实践活动的概率;

②在“创建文明城市”活动中,验收小组把郑州市的空气质量作为一个评价指标,从当月的空气质量监测数据中抽取3天的数据进行评价,设抽取到不小于180的天数为的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

讨论的单调性;

时,若关于x的不等式恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

若函数处的切线与直线垂直,求实数a的值;

讨论函数的单调区间与极值;

若函数有两个零点,求满足条件的最小整数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙二射击运动员分别对一目标射击次,甲射中的概率为,乙射中的概率为,求:

(1)人都射中目标的概率; (2)人中恰有人射中目标的概率;

(3)人至少有人射中目标的概率; (4)人至多有人射中目标的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位为了响应疫情期间有序复工复产的号召,组织从疫区回来的甲、乙、丙、丁4名员工进行核酸检测,现采用抽签法决定检测顺序,在员工甲不是第一个检测,员工乙不是最后一个检测的条件下,员工丙第一个检测的概率为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方体的棱长为2,分别是的中点,则过且与平行的平面截正方体所得截面的面积为____和该截面所成角的正弦值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,AB//CD,且

(1)证明:平面PAB⊥平面PAD

(2)若PA=PD=AB=DC, ,且四棱锥P-ABCD的体积为,求该四棱锥的侧面积.

查看答案和解析>>

同步练习册答案