精英家教网 > 高中数学 > 题目详情

【题目】已知{an}是递增的等差数列,a1 , a2是方程x2﹣4x+3=0的两根.
(1)求数列{an}的通项公式;
(2)求数列{ }的前n项和Sn

【答案】
(1)解:∵{an}是递增的等差数列,∴a1<a2

又a1,a2是方程x2﹣4x+3=0的两根,∴解方程,得a1=1,a2=3,

∴d=a2﹣a1=3﹣1=2,

∴an=1+(n﹣1)×2=2n﹣1


(2)解: = =

∴Sn= (1﹣

= (1﹣ )=


【解析】(1)由a1<a2 , a1 , a2是方程x2﹣4x+3=0的两根,求出a1=1,a2=3,由此利用等差数列的性质能求出数列{an}的通项公式.(2)由 = = ,利用裂项求和法能求出数列{ }的前n项和Sn
【考点精析】关于本题考查的数列的前n项和和数列的通项公式,需要了解数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于0<a<1,给出下列四个不等式(
①loga(1+a)<loga(1+ );
②loga(1+a)<loga(1+ );
③a1+a<a
④a1+a<a
其中成立的是(
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex+x﹣2,g(x)=lnx+x2﹣3,若实数a,b满足f(a)=0,g(b)=0,则(
A.0<g(a)<f(b)
B.f(b)<g(a)<0
C.f(b)<0<g(a)
D.g(a)<0<f(b)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+(x﹣c)|x﹣c|,a<0,c>0.
(1)当a=﹣ ,c= 时,求函数f(x)的单调区间;
(2)当c= +1时,若f(x)≥ 对x∈(c,+∞)恒成立,求实数a的取值范围;
(3)设函数f(x)的图象在点P(x1 , f(x1))、Q(x2 , f(x2))两处的切线分别为l1、l2 . 若x1= ,x2=c,且l1⊥l2 , 求实数c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的展开式中,前三项系数成等差数列.
(1)求第三项的二项式系数及项的系数;
(2)求含x项的系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四种说法:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y= + 与y= 都是奇函数;
④函数y=(x﹣1)2与y=2x1在区间[0,+∞)上都是增函数.
其中正确的序号是(把你认为正确叙述的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 的图像与的图像关于轴对称,函数,若关于的不等式恒成立,则实数的取值范围为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2+bx是定义在[a﹣1,3a]上的偶函数,那么a+b的值是(
A.﹣
B.
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两地相距200千米,汽车从甲地匀速行驶到乙地,速度不得超过50千米/时.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.02;固定部分为50(元/时).
(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出定义域;
(2)用单调性定义证明(1)中函数的单调性,并指出汽车应以多大速度行驶可使全程运输成本最小?

查看答案和解析>>

同步练习册答案