精英家教网 > 高中数学 > 题目详情
cosα=-
4
5
,且α是第二象限角,则tanα的值为(  )
分析:由α是第二象限角,得到sinα的值大于0,可由cosα的值,利用同角三角函数间的基本关系求出sinα的值,再由sinα及cosα的值,利用同角三角函数间的基本关系弦化切,即可求出tanα的值.
解答:解:∵cosα=-
4
5
,且α是第二象限角,
∴sinα=
1-cos2α
=
3
5

则tanα=
sinα
cosα
=-
3
4

故选C
点评:此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键,同时注意角度的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

cosα=-
4
5
,α是第三象限的角,则sin(α+
π
4
)
=(  )
A、-
7
2
10
B、
7
2
10
C、-
2
10
D、
2
10

查看答案和解析>>

科目:高中数学 来源: 题型:

cosα=-
4
5
,α是第三象限的角,则
1+tan
α
2
1-tan
α
2
=
-
1
2
-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若cosα=-
4
5
,α是第三象限角,则tan(
π
4
+
α
2
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

cosα=-
4
5
,α是第二象限角,则tan2α=(  )
A、
24
7
B、-
24
7
C、
1
2
D、-
1
2

查看答案和解析>>

同步练习册答案