精英家教网 > 高中数学 > 题目详情

【题目】如图,在棱长均为的三棱柱中,点在平面内的射影的交点,分别为的中点.

(1)求证:四边形为正方形;

(2)求直线与平面所成角的正弦值;

(3)在线段上是否存在一点,使得直线与平面没有公共点?若存在求出的值.(该问写出结论即可)

【答案】(1)见证明;(2) (3)

【解析】

(1)先连结,由题意先证明平面,进而证明为菱形,再证明,即可得出结论成立;

(2)根据题意建立如图所示坐标系,求出直线的方向向量以及平面的一个法向量,根据向量夹角的余弦值,即可得出结果;

(3)因为直线与平面没有公共点,即是,设点坐标为,求出平面的一个法向量,根据线面平行,得到直线的方向向量与平面法向量数量积为0,进而可求出,即可得出结果.

解:(1)连结.

因为在平面内的射影的交点,所以.

由已知三棱柱各棱长均相等,所以,且为菱形.

由勾股定理得,即,所以四边形为正方形.

(2)由(1)知平面.

在正方形中,.

如图建立空间直角坐标系.由题意得

.

所以.

设平面的法向量为

,即.

,则.

于是.

又因为

设直线与平面所成角为

.

所以直线与平面所成角的正弦值为

(3)直线与平面没有公共点,即.

点坐标为重合时不合题意,所以.

因为.

为平面的法向量,

,则.

于是.

.

所以解得.

此时

所以.所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】ABC,A,B,C所对的边分別为a,b,c,asinAcosC+csinAcosA=c.

(1)c=1,sinC=,ABC的面积S;

(2)DAC的中点,cosB=,BD=,ABC的三边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆)的左、右焦点为,右顶点为,上顶点为.已知

1)求椭圆的离心率;

2)设为椭圆上异于其顶点的一点,以线段为直径的圆经过点,经过原点的直线与该圆相切,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆经过点.

(1)求椭圆的标准方程;

(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于两个相异点,证明:面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等高的正三棱锥P-ABC与圆锥SO的底面都在平面M上,且圆O过点A,又圆O的直径ADBC,垂足为E,设圆锥SO的底面半径为1,圆锥体积为

(1)求圆锥的侧面积;

(2)求异面直线ABSD所成角的大小;

(3)若平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为,求三棱锥的侧棱PA与底面ABC所成角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).

阶梯级别

第一阶梯

第二阶梯

第三阶梯

月用电范围(度)

(0,210]

(210,400]

某市随机抽取10户同一个月的用电情况,得到统计表如下:

居民用电户编号

1

2

3

4

5

6

7

8

9

10

用电量(度)

53

86

90

124

132

200

215

225

300

410

若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯的部分每度0.6元,第三阶梯超出第二阶梯的部分每度0.8元,试计算A居民用电户用电410度时应电费多少元?

现要在这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;

以表中抽到的10户作为样本估计全市的居民用电,现从全市中依次抽取10户,若抽到户用电量为第一阶梯的可能性最大,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点,且与圆外切于点,过点作圆C的两条切线PM,PN,切点为M,N.

(1)求圆C的标准方程;

(2)试问直线MN是否恒过定点?若过定点,请求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两圆(圆心,半径),与(圆心,半径)不是同心圆,方程相减(消去二次项)得到的直线叫做圆 与圆的根轴;

(1)求证:当相交于A,B两点时,所在直线为根轴;

(2)对根轴上任意点P,求证:;

(3)设根轴交于点H,,求证:H的比;

查看答案和解析>>

同步练习册答案