精英家教网 > 高中数学 > 题目详情

已知函数,当时,.

(1)若函数在区间上存在极值点,求实数a的取值范围;

(2)如果当时,不等式恒成立,求实数k的取值范围;

(3)试证明:.

 

(1);(2);(3)证明过程详见解析.

【解析】

试题分析:本题主要考查导数的运算、利用导数研究函数的单调性、利用导数求函数的极值与最值等数学知识,考查学生分析问题解决问题的能力、转化能力和计算能力.第一问,先对求导,利用判断函数的单调区间,利用单调性的变化,判断有无极值;第二问,将已知的恒成立问题转化为,即转化为求函数的最小值问题,利用导数判断的单调性,求出最小值;第三问,利用第二问的结论进行变形,得到类似所证结论的表达式,通过式子的累加得到所证结论.

试题解析:(1)当x>0时,,有

所以在(0,1)上单调递增,在上单调递减,

函数处取得唯一的极值.由题意,且,解得

所求实数的取值范围为. 4分

(2)当时, 5分

,由题意,上恒成立

6分

,则,当且仅当时取等号.

所以上单调递增,. 8分

因此, 上单调递增,

所以.所求实数的取值范围为 9分

(3)由(2),当时,即,即. 10分

从而. 12分

,得

将以上不等式两端分别相加,得

14分

考点:1.利用导数研究函数的单调性;2.利用导数求函数的极值和最值;3.恒成立问题.

 

练习册系列答案
相关习题

科目:高中数学 来源:2013-2014学年江西省宜春市高三考前模拟文科数学试卷(解析版) 题型:选择题

下列有关命题的说法正确的是( )

A.命题“若x2 =4,则x=2”的否命题为:“若x2 =4,则x≠2”

B.“x=2”是“x2—6x+8=0”的必要不充分条件

C.命题“若x=y,则cosx=cosy”的逆否命题为真命题

D.命题“存在x∈R,使得x2+x+3>0”的否定是:“对于任意的x∈R,均有x2 +x+3<0"

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西省南昌市高三第二次模拟考试文科数学试卷(解析版) 题型:选择题

已知函数是周期为2的周期函数,且当时,,则函数的零点个数是( )

A.9 B.10 C.11 D.12

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西省高三联合考试理科数学试卷(解析版) 题型:填空题

如图,是函数的图像的一段,O是坐标原点,是该段图像的最高点,是该段图像与x轴的一个交点,则此函数的解析式为 .

 

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西省高三联合考试理科数学试卷(解析版) 题型:选择题

阅读下面的程序框图,输出的结果是( )

A.9 B.10 C.11 D.12

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西省高三联合考试文科数学试卷(解析版) 题型:解答题

已知在△ABC中,角A,B,C的对边分别是a,b,c,满足,关于x的不等式x2cosC+4xsinC+6≥0对任意的x∈R恒成立.

(1)求角A的值;

(2)求f(C)=2sinC·cosB的值域.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西省高三联合考试文科数学试卷(解析版) 题型:选择题

如图,抛物线的焦点为F,斜率的直线过焦点F,与抛物线交于A、B两点,若抛物线的准线与x轴交点为N,则( )

A. 1 B. C. D.

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江西省上饶市高三第二次模拟考试理科数学试卷(解析版) 题型:填空题

已知椭圆,圆,过椭圆上任一与顶点不重合的点P引圆O的两条切线,切点分别为A,B,直线AB与x轴,y轴分别交于点M,N,则_____________

 

查看答案和解析>>

科目:高中数学 来源:2013-2014学年江苏省高三百校联合调研测试(一)数学试卷(解析版) 题型:解答题

已知函数(),其图像在处的切线方程为.函数

(1)求实数的值;

(2)以函数图像上一点为圆心,2为半径作圆,若圆上存在两个不同的点到原点的距离为1,求的取值范围;

(3)求最大的正整数,对于任意的,存在实数满足,使得

 

查看答案和解析>>

同步练习册答案