精英家教网 > 高中数学 > 题目详情

【题目】下面有五个命题:
①函数y=sin4θ﹣cos4θ的最小正周期是π;
②终边在y轴上的角的集合是
③把 的图象向右平移 得到y=3sin2x的图象;
④函数 在[0,π]是减函数;
其中真命题的序号是(写出所有真命题的序号)

【答案】①③
【解析】解:①y=sin4θ﹣cos4θ=(sin2θ﹣cos2θ)(sin2θ+cos2θ)=sin2θ﹣cos2θ=﹣cos2θ,所以函数的最小周期为π,所以①正确.
②终边在y轴上的角的集合是 },所以②错误.
③把 的图象向右平移 得到 ,所以正确.
④函数 =﹣cosx在[0,π]是增函数,所以④错误.
故真命题是③.
所以答案是:①③
【考点精析】根据题目的已知条件,利用命题的真假判断与应用的相关知识可以得到问题的答案,需要掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同,

(1)求m,n的取值.
(2)比较甲、乙两组数据的稳定性,并说明理由.
注:方差公式s2=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点A,B是单位圆上的两点,A,B两点分别在第一、二象限,点C是圆与x轴正半轴的交点,角∠AOB= ,若点A的坐标为( ),记∠COA=α.

(1)求 的值;
(2)求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}中,a1=﹣2,公差d=3;数列{bn}中,Sn为其前n项和,满足:2nSn+1=2n(n∈N+
(Ⅰ)记An= ,求数列An的前n项和S;
(Ⅱ)求证:数列{bn}是等比数列;
(Ⅲ)设数列{cn}满足cn=anbn , Tn为数列{cn}的前n项积,若数列{xn}满足x1=c2﹣c1 , 且xn= ,求数列{xn}的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:方程x2+mx+1=0有两个不等的负根;q:方程4x2+4(m﹣2)x+1=0无实根,若“p或q”真“p且q”为假,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取50名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100],得到如图所示的频率分布直方图.

(1)若该校高一年级共有学生1000人,试估计成绩不低于60分的人数;
(2)为了帮助学生提高数学成绩,学校决定在随机抽取的50名学生中成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[40,50)中的某一位同学.已知甲同学的成绩为42分,乙同学的成绩为95分,求甲、乙恰好被安排在同一小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=1,an+1=(1+ )an+
(1)设bn= ,求数列{bn}的通项公式;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的方程2x2﹣bx+ =0的两根为sinθ、cosθ,θ∈( ).
(1)求实数b的值;
(2)求 + 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线y2=4x的焦点F的直线交该抛物线于AB两点,O为坐标原点.若|AF|=3,则△AOB的面积为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案