精英家教网 > 高中数学 > 题目详情
已知数列{an}是正项等差数列,给出下列判断:
①a2+a8=a4+a6;②a4•a6≥a2•a8;③a52≤a4•a6;④a2+a8≥2
a4a6
.其中有可能正确的是(  )
A、①④B、①②④
C、①③D、①②③
分析:由正项等差数列的性质易知①④正确,再由作差法可知②正确,③不正确.
解答:解:∵数列{an}是正项等差数列,
∴a2+a8=a4+a6,∴①正确;
∵a4•a6-a2•a8=(a1+3d)(a1+5d)-(a1+d)(a1+7d)=8d2≥0(其中d为公差),∴②正确;
∵a52-a4a6=(a1+d)2-(a1+3d)(a1+5d)=d2>0.∴③不正确.
∵a2+a8=a4+a6≥2
a4a6
,∴④正确;
同理可判断出③不正确,
故选B.
点评:本题考查等差数列的性质,解题时要注意公式的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是正项等比数列,公比q≠1,若lga2是lga1和1+lga4的等差中项,且a1a2a3=1.
(1)求数列{an}的通项公式
(2)设cn=
1n(3-lgan)
(n∈N*)
,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是正项等比数列,若a1=32,a4=4,则数列{log2an}的前n项和Sn的最大值为
15
15

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南宁模拟)已知数列{an}是正项等比数列,若a2=2,2a3+a4=16则数列{an}的通项公式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•桂林模拟)已知数列{an}是正项数列,其首项a1=3,前n项和为Sn,4Sn=
a
2
n
+2an+4(n≥2)

(1)求数列{an}的第二项a2及通项公式;
(2)设bn=
1
Sn
,记数列{bn}的前n项和为Kn,求证:Kn
17
21

查看答案和解析>>

同步练习册答案