精英家教网 > 高中数学 > 题目详情

【题目】记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆,以椭圆的顶点焦点为作相似椭圆

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,且与椭圆仅有一个公共点,试判断的面积是否为定值(为坐标原点)?若是,求出该定值;若不是,请说明理由.

【答案】(Ⅰ)(Ⅱ)的面积为定值6

【解析】

(Ⅰ)椭圆的焦点为椭圆的顶点,故可得椭圆的焦点,离心率与椭圆相同,故可得椭圆

(Ⅱ)当直线的斜率存在时,设出直线,由直线与椭圆只有一个公共点得出的等量关系,然后再用求出的长度、点到直线的距离,从而得出的面积,利用减元思想便可得结果。

解:(Ⅰ)由条件知,椭圆的离心率,且焦点为

∴椭圆的方程为

(Ⅱ)当直线的斜率存在时,设直线

联立方程组得,

因为直线与椭圆仅有一个公共点,

得,

联立方程组

化简得

原点到直线的距离,

当直线的斜率不存在时,

,则

原点到直线的距离

综上所述,的面积为定值6

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,试讨论方程的解的个数;

2)若曲线上分别存在点,使得是以原点为直角顶点的直角三角形,且斜边的中点在轴上,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和零点;

(2)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三角形的边长为分别为各边的中点,将沿折叠,使三点重合,构成三棱锥

(1)求平面与底面所成二面角的余弦值;

(2)设点分别在上, (为变量)

①当为何值时,为异面直线的公垂线段? 请证明你的结论

②设异面直线所成的角为,异面直线所成的角为,试求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的等比数列的公比,且是方程的两根,记的前n项和为.

1)若依次成等差数列,求m的值;

2)设,数列的前n项和为,若,求n的最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代著名的周髀算经中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷长一丈三尺五寸,夏至晷长一尺六寸意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为分;且“冬至”时日影长度最大,为1350分;“夏至”时日影长度最小,为160分则“立春”时日影长度为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,点为左支上任意一点,直线是双曲线的一条渐近线,点在直线上的射影为,且当取最小值5时,的最大值为( )

A. B. C. D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若存在正实数xy使得x2+y2lny-lnx-axy=0aR)成立,则a的取值范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)若直线与曲线相交于两点,设点,已知,求实数的值.

查看答案和解析>>

同步练习册答案