精英家教网 > 高中数学 > 题目详情
已知B(-1,1)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上一点,且点B到椭圆的两个焦点距离之和为4;
(1)求椭圆方程;
(2)设A为椭圆的左顶点,直线AB交y轴于点C,过C作斜率为k的直线l交椭圆于D,E两点,若
S△CBD
S△CAE
=
1
6
,求实数k的值.
(1)由题意,2a=4,∴a=2,
∵B(-1,1)是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上一点,
1
4
+
1
b2
=1

b2=
4
3

∴椭圆方程为
x2
4
+
3y2
4
=1

(2)由题意A(-2,0),B(-1,1),则AB的方程为y=x+2,
∴C(0,2),∴
|CB|
|CA|
=
1
2

S△CBD
S△CAE
=
1
6
,∴
|CD|
|CE|
=
1
3

设D(x1,y1),E(x2,y2),则x2=3x1
若CD斜率不存在,方程为x=0,D(0,
2
3
),E(0,-
2
3
),
|CD|
|CE|
=
3
-1
3
+1
1
3

若CD斜率存在,设y=kx+2,代入椭圆方程,得到(3k2+1)x2+12kx+8=0
∴x1+x2=
-12k
3k2+1
,x1x2=
8
3k2+1

∵x2=3x1
k=±
2
6
3
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若动点()在曲线上变化,则的最大值为(   )
A.B.C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆E:
x2
a2
+
y2
3
=1
(a
3
)的离心率e=
1
2
.直线x=t(t>0)与曲线 E交于不同的两点M,N,以线段MN 为直径作圆 C,圆心为 C.
(1)求椭圆E的方程;
(2)若圆C与y轴相交于不同的两点A,B,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若AB为抛物线y2=2px(p>0)的动弦,且|AB|=a(a>2p),则AB的中点M到y轴的最近距离是(  )
A.
a
2
B.
p
2
C.
a+p
2
D.
a-p
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
2
2
,并且直线y=x+b是抛物线C2:y2=4x的一条切线.
(Ⅰ)求椭圆C1的方程.
(Ⅱ)过点S(0,-
1
3
)
的动直线l交椭圆C1于A、B两点,试问:在直角坐标平面上是否存在一个定点T,使得以AB为直径的圆恒过定点T?若存在求出T的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线C:y2=2px和⊙M:(x-4)2+y2=1,过抛物线C上一点H(x0,y0)作两条直线与⊙M相切于A、B两点,分别交抛物线为E、F两点,圆心点M到抛物线准线的距离为
17
4

(1)求抛物线C的方程;
(2)当∠AHB的角平分线垂直x轴时,求直线EF的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定点A(2,0),它与抛物线y2=x上的动点P连线的中点M的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的一个焦点为F(1,0),且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AF与BN交于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为e=
3
2
,且过点(
3
1
2

(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l:y=kx+m(k≠0,m>0)与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线l的方程.

查看答案和解析>>

同步练习册答案